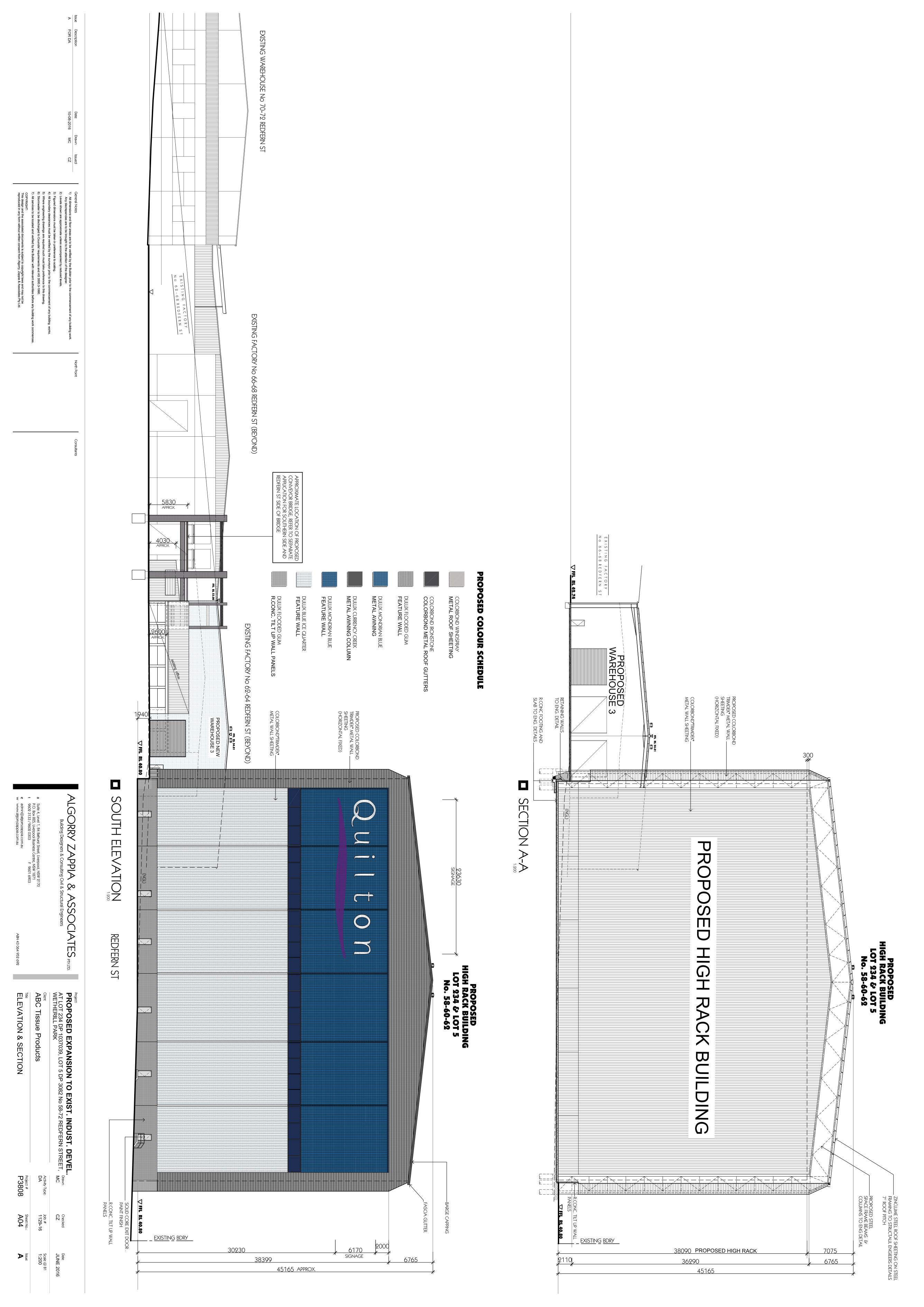


existing pump room S T R Ш BDRY 209 215

HIGH RACK BUILDING PLAN 1:500

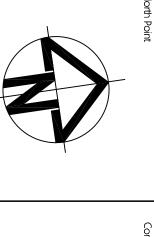

RRY ZAPPIA & , ding Designers & Consulting Civil & Str ASSOCIATES PTY

PROPOSED EXPANSION TO EXIST. INDUST. DEVEL.

AT LOT 234 DP 1037039, LOT 5 DP 3082 No 58-72 REDFERN STREET, MC
WETHERILL PARK ABC Tissue Products

HIGH RACK PLAN

Project # **P3808** Sheet No.: Job # 1129-16 JUNE 2016
Scale @ B1
1:500 > Issue



Date Drawn Issued

10-08-2016 MC CZ

2) Levels shown are approximate unless accompanied by reduced levels.
 3) Figured dimensions must be taken in preference to scaling.
 4) All boundary clearances must be verified by the surveyor prior to the commencement of any building works.
 5) Where engineering drawings are required such must take preference to this drawing.
 6) Stormwater to be discharged to Councils' requirements and AS 3500.3-1990.
 7) All services to be located and verified by the Builder with relevant authorities before any building work commences.
 COPYRIGHT:

ommencement of any building works.
o this drawing.
-1990.
orities before any building work commences.
ad may not be

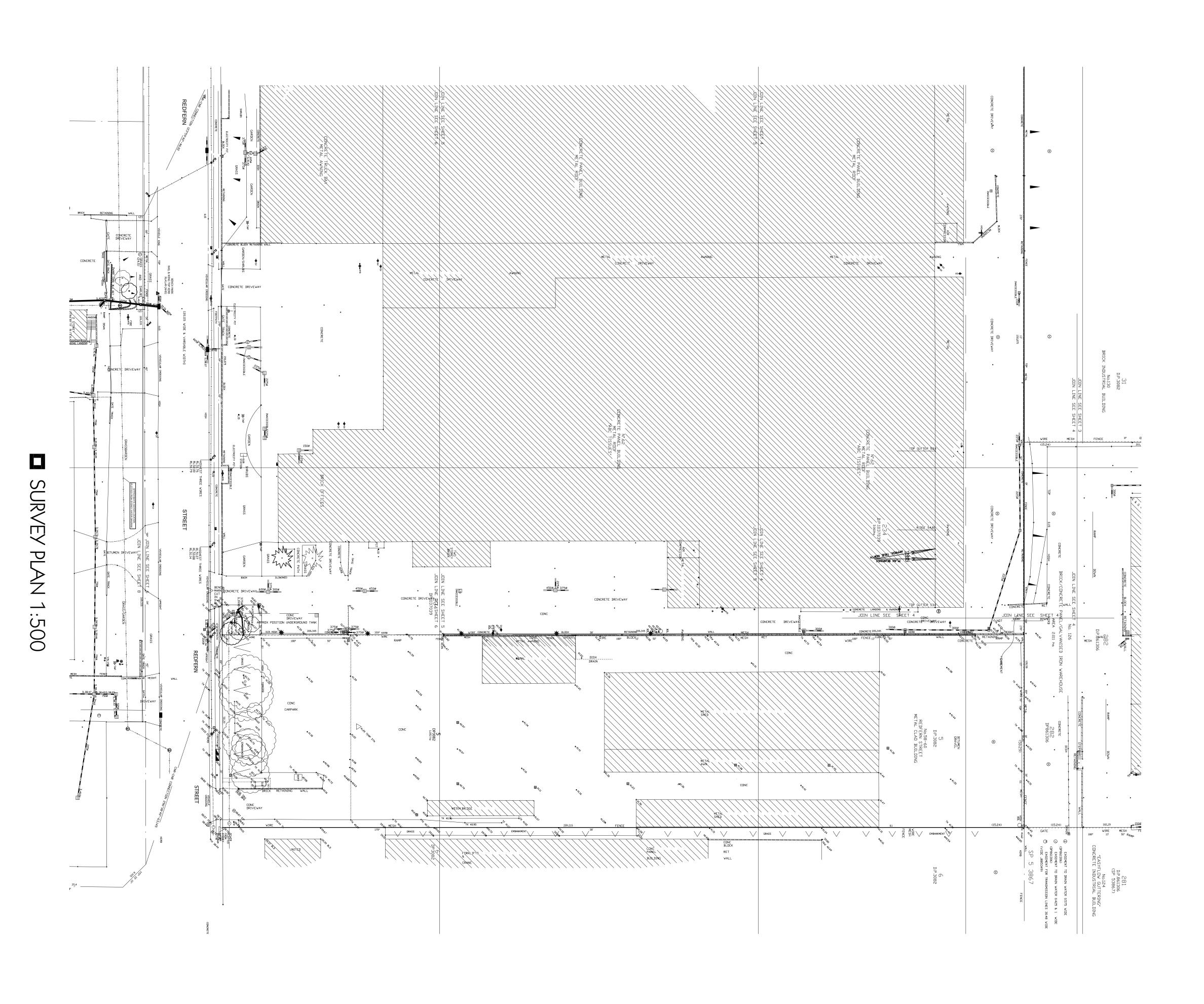
ALGORRY ZAPPIA & Building Designers & Consulting Civil & S

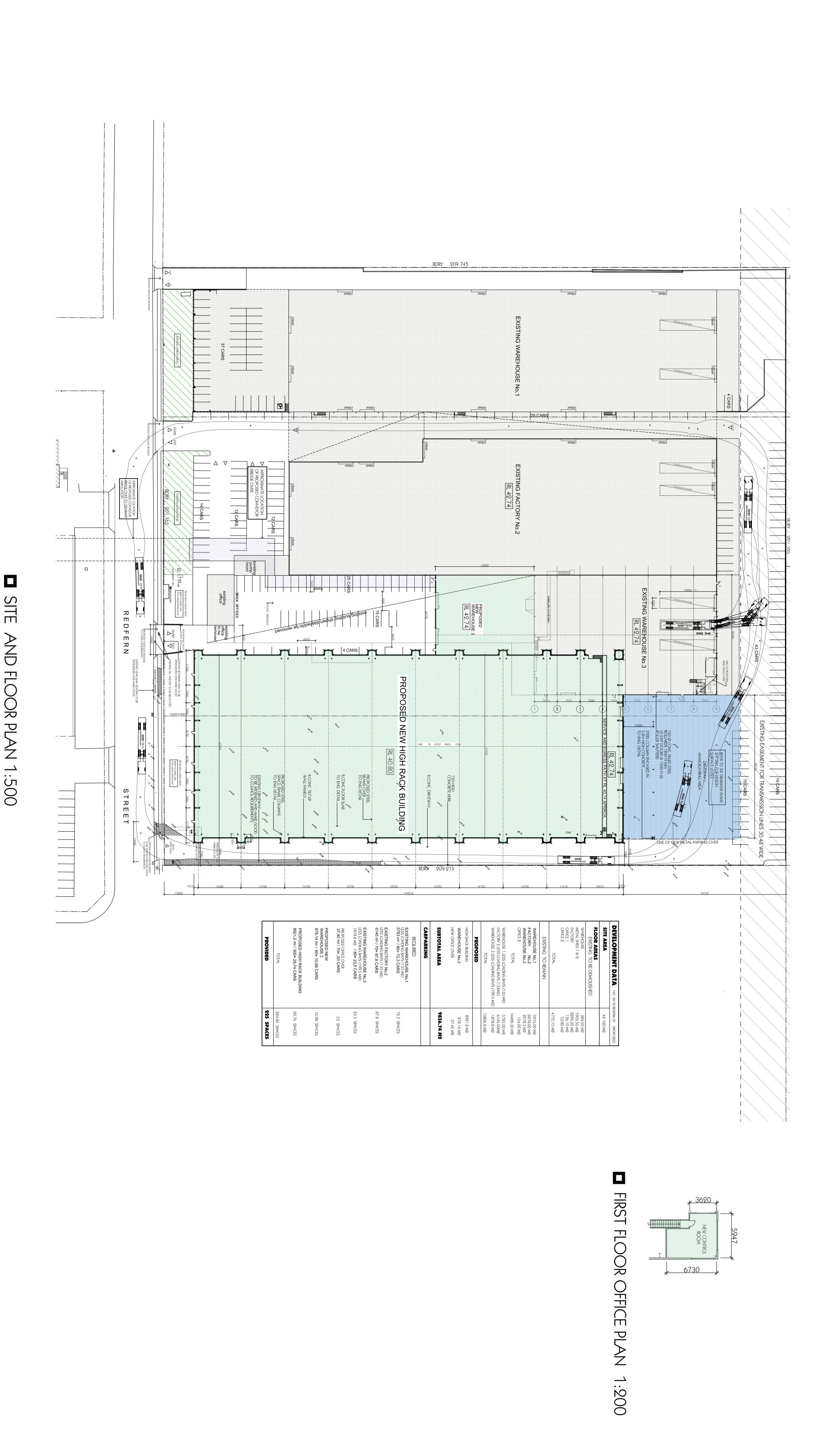
ASSOCIATES PTO ITUCTURAL Engineers

PROPOSED EXPANSION TO EXIST. INDUST. DEVEL.
AT LOT 234 DP 1037039, LOT 5 DP 3082 No 58-72 REDFERN STREET, MC
WETHERILL PARK

SURVEY PLAN

Project # **P3808**


Sheet No.:


> Issue

Checked CZ
Job #
1129-16

Date
JUNE 2016
Scale @ B1
1:500

ABC Tissue Products

ALGORRY ZAPPIA & ASSOCIATES PTYLITD.
Building Designers & Consulting Civil & Structural Engineers

PROPOSED EXPANSION TO EXIST. INDUST. DEVEL.
AT LOT 234 DP 1037039, LOT 5 DP 3082 No 58-72 REDFERN STREET, MC
WETHERILL PARK

SITE PLAN

Project # **P3808**

Sheet No.:

Issue

Job # 1129-16

Date JUNE 2016 Scale @ B1 1:500

Checked CZ

ABC Tissue Products

Appendix B: Borehole Logs

ENVIRONMENTAL LOG

Borehole No. 301 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

	29923K 17			Meth	od: SPIRAL AUGER JK205	R.L. Surface: N/A Datum:				
				Logg	ged/Checked by: J.D.C./G.F.					
ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
		0	A 4		CONCRETE: 260mm.t			_		
	N = 22 11,12,10	1 -		-	FILL: Silty sandy gravel, fine to medium grained igneous, grey, trace of ash and slag.	M		-	-	
	N = 8 2,4,4	2 -			FILL: Silty clay, medium to high plasticity, light brown, trace of fine to medium grained shale gravel and ash.	MC>PL		-	-	
	N = 9 3,4,5	3 -			as above, but grey and fine to medium grained ironstone gravel.			-	-	
		5 -		-	SHALE: light grey. END OF BOREHOLE AT 6.0m	XW		-	MONITORING WELI INSTALLED TO 6.00 CLASS 18 MACHINI SLOTTED 50mm PV STANDPIPE 6.0m T 3.0m, CASING 3.0m TO SURFACE, 2mm SAND FILTER PACH 6.0m TO 3.0m, BENTONITE SEAL FROM 3.0m TO 2.5r BACKFILLED WITH SAND TO SURFACE AND COMPLETED WITH A CONCRETE	
	SAMPLES	N = 22 11,12,10 N = 8 2,4,4	N = 22 11,12,10 N = 8 2,4,4 N = 9 3,4,5	N = 8 2,4,4 2 N = 9 3,4,5	N = 8 2,4,4 N = 9 3,4,5 N = 9 3,4,5	Logged/Checked by: J.D.C./G.F. Signature Continue Continue	Logged/Checked by: J.D.C./G.F. Signature Discription Description Description	Logged/Checked by: J.D.C./G.F. Logged/Checked by: J.D.C./G.F. DESCRIPTION Particle of the p	Logged/Checked by: J.D.C./G.F. Logged/Checked by: J.D.C./G.F. DESCRIPTION DESCRI	

ENVIRONMENTAL LOG

Borehole No. 302 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Logged/Checked by: J.D.C./G.F. Section Common Comm		No. E2	29923K 17			Meth	nod: SPIRAL AUGER JK205			L.L. Surfa	ace: N/A
Shape of the state of the tomograph of the state of the state of the tomograph of the state of the sta						Logg	ged/Checked by: J.D.C./G.F.				
CONCRETE: 250mm.t PILL: Silty clay, medium to high plasticity, brown, trace of fine to medium grained igneous gravel and ash. N = 7 1,3,4 1 CL-CH SILTY CLAY: medium to high plasticity, light grey and red brown and orange brown, with fine to medium grained ironstone gravel. SHALE: light grey. XW SHALE: light grey. WW As above, but dark grey. MONITORING WE INSTALLED TO 6. CLASS 18 MACH SLOTTED 50mm. STANDPIPE 6.00 TO 2.0m, CASING C.2 TO SURFACE, a SAND FILTER PAGE OF TO 12.0m, CASING STANDPIPE 6.00 TO 2.0m, CASING STANDPIPE SAND FILTER PAGE OF TO 2.0m, CASING S	Groundwater Record	\vdash	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
N = 7 1,3,4 1 CL-CH SILTY CLAY: medium to high plasticity, light grey and red brown and orange brown, with fine to medium grained ironstone gravel. N = 7 1,2,5 2 SHALE: light grey. XW as above, but dark grey. DW NONTORING WE INSTALLED TO 6 CLASS 18 MACH SLOTTED Somm! STANDPIPE 60mm 2.0m, CASING 2.C TO SURFACE, 27 SAND FILTER PA 6.0m TO 2.0m, BENTONITE SEA! FROM 2.0m TO 3.0m COMPLETE WITH A CONCRE				0	A		CONCRETE: 250mm.t				
N = 7 1,2,5 2 Description Plasticity, light grey and red brown and orange brown, with fine to medium grained ironstone gravel. SHALE: light grey. XW						-	plasticity, brown, trace of fine to medium grained igneous gravel and	MC <pl< td=""><td></td><td>-</td><td>-</td></pl<>		-	-
To Shale: light grey. Shale: light grey. Shale: light grey. To Shale: light grey. To Shale: light grey. Monitoring we installed to 6 Class 18 Machi Slotted 50m To 2.0m, Casling 2.0 To Surrace. 2n Sand Filter Pa 6.0m To 2.0m, Bentonite Skales of Room 2.0m, Casling 2.0 To Surrace. 2n Sand Filter Pa 6.0m To 2.0m, Bentonite Skales of Room 2.0m, Casling 2.0 To Surrace. 2n Sand Filter Pa 6.0m To 2.0m, Bentonite Skales of Room 2.0m, Casling 2.0 To Surrace. 2n Sand Filter Pa 6.0m To 2.0m, Bentonite Skales of Room 2.0m, Casling 2.0m		_				CL-CH	plasticity, light grey and red brown and orange brown, with fine to medium			-	
as above, but dark grey. MONITORING WE INSTALLED TO 6. CLASS 18 MACHI SLOTTED 50mm I STANDPIPE 6.0m 2.0m, CASING 2.0. TO SURFACE, 2m SAND FILTER PA 6.0m TO 2.0m, BENTONITE SEA FROM 2.0m TO 0.0m BACKFILLED WITH A CONCRE				2-			grained ironstone gravel.				-
GATIC COVER	ON 7/6/17			3 - 4 - 5 - 5 - 6		-	as above,				MONITORING WELL INSTALLED TO 6.0m, CLASS 18 MACHINE SLOTTED 50mm PVC STANDPIPE 6.0m TO 2.0m, CASING 2.0m TO SURFACE, 2mm SAND FILTER PACK 6.0m TO 2.0m, BENTONITE SEAL FROM 2.0m TO 0.5m, BACKFILLED WITH SAND TO SURFACE AND COMPLETED WITH A CONCRETED
				6	-		END OF BOREHOLE AT 6.0m			_	

ENVIRONMENTAL LOG

Borehole No. 303 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

58-62 REDFERN STREET, WETHERILL PARK, NSW Location:

	No . E2	29923K 17			Meth	od: SPIRAL AUGER JK205			.L. Surfa	ace: N/A
					Logg	ged/Checked by: J.D.C./G.F.				
Groundwater Record	ASS SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0	A V		CONCRETE: 250mm.t			_	
		N = 12	_		CL-CH	SILTY CLAY: medium to high plasticity, orange brown, trace of fine to medium grained ironstone gravel.	MC <pl< td=""><td></td><td>_</td><td></td></pl<>		_	
ON 7/6/17		3,5,7	2 - 3 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		-	as above, but with ironstone bands. END OF BOREHOLE AT 6.0m	DW			MONITORING WELL INSTALLED TO 6.0m CLASS 18 MACHINE SLOTTED 50mm PVC STANDPIPE 6.0m TC 0.8m, CASING 0.8m TO SURFACE, 2mm SAND FILTER PACK 6.0m TO 0.8m, BENTONITE SEAL FROM 0.8m TO 0.3m BACKFILLED WITH SAND TO SURFACE AND COMPLETED WITH A CONCRETEI GATIC COVER

ENVIRONMENTAL LOG

Borehole No. 304 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job I	No. E	29923K			Meth	nod: EZIPROBE		R	.L. Surf	face: N/A
Date	: 6-4-1	17						D	atum:	
					Logg	ged/Checked by: H.L./G.F.				
Groundwater Record	ASS SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON			0			ASPHALTIC CONCRETE: 150mm.t				
COMPLET ION			-			FILL: Silty clay, medium to high plasticity, orange brown, trace of fine to coarse grained shale gravel.	MC≤PL			-
			- - 1 -		-	SHALE: dark grey.	XW			-
			-			SHALE: grey.	XW-DW			-
			-			END OF BOREHOLE AT 1.5m				-
			2- 2- 3- 3-							- - - - - -
			4 5							- - - - - - -
			- - 7_							-

ENVIRONMENTAL LOG

Borehole No. 305 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

58-62 REDFERN STREET. WETHERILL PARK. NSW Location:

Loca	ation:	58-62	REDI	FERN	STRE	ET, WETHERILL PARK, NSW				
	No. E29 e: 6-4-17				Meth	nod: SPIRAL AUGER JK205	R.L. Surface: N/A Datum:			
					Logg	ged/Checked by: H.L./G.F.				
Groundwater Record	ES ASS ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION			0		-	ASPHALTIC CONCRETE: 150mm.t FILL: Silty sandy clay, medium to high plasticity, brown and grey, trace of fine to coarse grained igneous and ironstone gravel. SHALE: grey, with iron indurated bands.	MC≤PL XW			
			5 — 5 —							

ENVIRONMENTAL LOG

Borehole No. 306 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No	o. E29	9923K			Meth	od: EZIPROBE		R	.L. Surf	ace: N/A
Date:	6-4-17	7						D	atum:	
					Logo	ged/Checked by: H.L./G.F.				
	ASS SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION			0		-	CONCRETE: 130mm.t FILL: Silty clay, medium plasticity, brown and dark grey brown, trace of fine to coarse grained igneous and ironstone gravel. as above, but dark grey brown mottled dark brown.	MC <pl< td=""><td></td><td></td><td>SLIGHT HYDROCARBON ODOUR </td></pl<>			SLIGHT HYDROCARBON ODOUR
			3 -			FILL: Silty clay, medium to high plasticity, dark grey brown, trace of organic material and fine to coarse grained igneous gravel.	MC <pl< td=""><td></td><td></td><td>STRONG ORGANIC ODOUR</td></pl<>			STRONG ORGANIC ODOUR
			4-		CL-CH	SILTY CLAY: medium to high plasticity, grey mottled red brown, trace of fine to coarse grained ironstone gravel.	MC <pl< td=""><td></td><td></td><td>- - -</td></pl<>			- - -
			-			as above,	MC <pl< td=""><td></td><td>-</td><td>-</td></pl<>		-	-
			5			√but red brown. END OF BOREHOLE AT 4.7m				EZIPROBE REFUSAL

ENVIRONMENTAL LOG

Borehole No. 307 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No. E29923K		Meth	nod: EZIPROBE	R.L. Surface: N/A			
Date: 6-4-17					D	atum:	
		Log	ged/Checked by: H.L./G.F.				
Groundwater Record ES ASS SAMPLES SAL Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET-	0		CONCRETE: 210mm.t				
ION	_	-	VOID				-
	1 — 1 — 2 — 3 — 3 — 5 — 5 — 5 — 7 — 7 — 7 — 7 — 7 — 7 — 7		END OF BOREHOLE AT 0.52m				- PROBE REFUSAL ON SUSPECTED CONCRETE SLAB

ENVIRONMENTAL LOG

Borehole No. 308 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No. E29923K	Meth	nod: EZIPROBE		R.L. Surf	ace: N/A
Date: 6-4-17				Datum:	
	Log	ged/Checked by: H.L./G.F.			
Groundwater Record ES ASS SAMPLES SAL Field Tests	Depth (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Rel. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON OMPLET-	0 70 74	CONCRETE: 300mm.t			
ION	1-	FILL: Silty gravelly clay, low to medium plasticity, brown and dark red brown, trace of fine to coarse grained igneous and ironstone gravel and ash.	MC≤PL		- -
	CL-CH	SILTY CLAY: medium to high plasticity, light grey mottled red brown, trace of fine to coarse grained ironstone gravel.	MC <pl< td=""><td></td><td></td></pl<>		
		END OF BOREHOLE AT 2.8m			
	3				

ENVIRONMENTAL LOG

Borehole No. 309 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

PROPOSED COMMERCIAL DEVELOPMENT **Project:**

58-62 REDFERN STREET. WETHERILL PARK. NSW Location:

Location:	58-62 RE	DFERN	SIRE	ET, WETHERILL PARK, NSW	'				
Job No. E29			Meth	od: EZIPROBE			.L. Surf	face: N/A	
Date : 6-4-17					Datum:				
		Logged/Checked by: H.L./G.F.							
Groundwater Record ES ASS SAMPLES SAL	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET	() 4		CONCRETE: 210mm.t					
ION		2	-	FILL: Silty clay, low to medium plasticity, orange brown, trace of fine to coarse grained ironstone and igneous gravel and ash. as above, but orange brown mottled grey. as above, but dark grey brown.	MC <pl< td=""><td></td><td></td><td></td></pl<>				
		1-	CL-CH	SILTY CLAY: medium to high plasticity, grey mottled orange brown, trace of fine to coarse grained ironstone gravel.	MC <pl< td=""><td></td><td></td><td>- - -</td></pl<>			- - -	
			-	SHALE: grey. END OF BOREHOLE AT 4.5m	XW			-	
		- 5 - - - - - - - - - - - - - - -						- - - - - -	

ENVIRONMENTAL LOG

Borehole No. 310 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No. E29923K	Ме	thod: EZIPROBE	R	.L. Surface: N/A
Date: 6-4-17			D	atum:
	Log	gged/Checked by: H.L./G.F.		
Groundwater Record ES ASS SAMPLES SAL Field Tests	Depth (m) Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering Strength/ Rei. Density	Hand Penetrometer Readings (kPa.) sylumas
DRY ON	0 7	CONCRETE: 150mm.t		
COMPLET	- IXXXI -	FILL: Silty clay, low to medium plasticity, brown and dark brown, trace	MC≥PL	
	CL 1-	of fine to coarse grained igneous gravel and ash. SILTY CLAY: low to medium plasticity, grey mottled orange brown.	MC≤PL	-
	==== -	SHALE: grey.	XW	-
	-	END OF BOREHOLE AT 1.3m		-
	2- 3- 3- 5-			

ENVIRONMENTAL LOG

Borehole No. 311 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No. E29923K	Method: EZIPROBE	R.L. Surface: N/A
Date: 6-4-17		Datum:
	Logged/Checked by: H.L./G.F.	
Groundwater Record ES ASB SAMPLES SAL Field Tests	Depth (m) Graphic Log Unified Classification Moisture Condition/	Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLET ION	O CONCRETE: 120mm.t FILL: Silty sandy clay, low to medium plasticity, grey and orange brown. / SHALE: grey and dark grey. DW END OF BOREHOLE AT 1.4m	- - - - -
	3-	- - - - - - - - - - - - - - -
	6	- - - - -

ENVIRONMENTAL LOG

Borehole No. 312 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job I	No. E2	29923K			Meth	od: EZIPROBE		R	.L. Surf	ace: N/A
Date	: 6-4-1	7						D	atum:	
					Logg	ged/Checked by: H.L./G.F.				
Groundwater Record	ES ASS ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON			0	N X X X		CONCRETE: 110mm.t				
COMPLET ION			- - - 1-		-	FILL: Silty clay, low to medium plasticity, grey and dark brown, trace of fine to coarse grained igneous and ironstone gravel and ash.	MC≥PL			- - -
			- - - 2 –			as above, but dark grey and brown.	MC≥PL			STRONG ORGANIC ODOUR
			3- - - - -			END OF BOREHOLE AT 2.25m				EZIPROBE REFUSAL
			4 5							
			- - 7_							-

ENVIRONMENTAL LOG

Borehole No. 313 1/1

Environmental logs are not to be used for geotechnical purposes

5

Client: C.I.R. CONSTRUCTION PTY LTD **Project:** PROPOSED COMMERCIAL DEVELOPMENT Location: 58-62 REDFERN STREET, WETHERILL PARK, NSW **Job No.** E29923K Method: EZIPROBE R.L. Surface: N/A **Date:** 6-4-17 Datum: Logged/Checked by: H.L./G.F. SAMPLES Hand Penetrometer Readings (kPa.) Groundwater Record Unified Classification Strength/ Rel. Density Moisture Condition/ Weathering Graphic Log Depth (m) **DESCRIPTION** Remarks DRY ON CONCRETE: 300mm.t COMPLET ION MC>PL FILL: Sandy gravelly clay, low to medium plasticity, with fine to coarse MC≥PL grained igneous gravel. FILL: Silty clay, low to medium plasticity, dark brown and orange brown, trace of fine to coarse grained igneous gravel, ash and fine to coarse grained ironstone gravel. MC<PL as above, but medium to high plasticity, dark grey. SHALE: grey, with iron indurated XW END OF BOREHOLE AT 3.9m EZIPROBE REFUSAL

ENVIRONMENTAL LOG

Borehole No. 314 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No. E29923K								
Date : 6-4-17	Datum: Logged/Checked by: J.D.C./G.F.							
Groundwater Record ES ASS SAMPLES SAL Field Tests	Graphic Log Unified Classification Noisture Condition/	Strength/ Rel. Density Hand Penetrometer Readings (kPa.) sylvalue						
DRY ON COMPLET ION	CL-CH SILTY CLAY: medium to high plasticity, light brown, with fine to medium grained shale gravel and ash. CL-CH SILTY CLAY: medium to high plasticity, light grey mottled orange brown, with fine to coarse grained ironstone gravel. SHALE: light grey. END OF BOREHOLE AT 3.0m A - SHALE: light grey. The state of t							

ENVIRONMENTAL LOG

Borehole No. 315 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

PROPOSED COMMERCIAL DEVELOPMENT **Project:**

Loca	tion	:	58-62	REDFERN STREET, WETHERILL PARK, NSW								
Job Date			9923K 7			Meth	od: SPIRAL AUGER JK205	R.L. Surface: N/A Datum:				
						Logg	ged/Checked by: J.D.C./G.F.					
Groundwater Record	ES ASS ASS SAMPLES	_	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON	п-			0 -			CONCRETE: 180mm.t				-	
ION			N = 5 1,2,3	- - - 1 –		-	FILL: Silty clay, low to medium plasticity, trace of fine to medium grained shale gravel and ash.	MC <pl< td=""><td></td><td></td><td>-</td></pl<>			-	
				-		CL-CH	SILTY CLAY: medium to high	MC <pl< td=""><td></td><td></td><td></td></pl<>				
			N = 16 4,8,8	-		-	medium grained ironstone gravel. SHALE: light grey, with clay and ironstone bands.	XW			-	
				2 -			END OF BOREHOLE AT 1.95m				_'	
				3 3 3 5 5 5 7 7 7 7 7								

ENVIRONMENTAL LOG

Borehole No. 316 1/1

Environmental logs are not to be used for geotechnical purposes

Client: C.I.R. CONSTRUCTION PTY LTD

Project: PROPOSED COMMERCIAL DEVELOPMENT

Location:	Location: 58-62 REDFERN STREET, WETHERILL PARK, NSW							
Job No. E29		Meth	nod: SPIRAL AUGER JK205	R.L. Surface: N/A				
Date : 6-4-17	7	Lam			D	atum:		
		Logo	ged/Checked by: J.D.C./G.F	·				
Groundwater Record ES ASS SAMPLES SAL	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET	0		CONCRETE: 200mm.t					
ION		-	FILL: Silty clay, low to medium plasticity, trace of fine to medium	MC <pl< td=""><td></td><td> </td><td></td></pl<>				
	1 - 2 - 3 - 4 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		Tigrained shale gravel and ash. END OF BOREHOLE AT 0.5m				EZIPROBE REFUSAL POSSIBLY ON SUSPECTED BURIED CONCRETE OR SERVICE	

ENVIRONMENTAL LOG

Borehole No. 317 1/1

Environmental logs are not to be used for geotechnical purposes

C.I.R. CONSTRUCTION PTY LTD Client:

Project: PROPOSED COMMERCIAL DEVELOPMENT

Job No. E29923K Method: SPIRAL AUGER JK205									.L. Surfa	ace: N/A	
			Logged/Checked by: J.D.C./G.F.								
Groundwater Record	ASS ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON	Ш		0	A		CONCRETE: 180mm.t					
ION I			- -		-	FILL: Silty clay, low to medium plasticity, grey trace of fine to medium grained shale gravel and ash.	MC≈PL				
		N = 15 5,7,8	-		-	SHALE: light grey.	XW				
			2			END OF BOREHOLE AT 0.95m					

EXPLANATORY NOTES - ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 - 50
Firm	50 - 100
Stiff	100 - 200
Very Stiff	200 - 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

SOIL		ROCK		DEFEC	TS AND INCLU	JSIO
	FILL	. o G	CONGLOMERATE	77777	CLAY SEAM	
	TOPSOIL		SANDSTONE		SHEARED OR CRUS	SHED
	CLAY (CL, CH)		SHALE	0000	BRECCIATED OR SHATTERED SEAM	/ZONE
	SILT (ML, MH)		SILTSTONE, MUDSTONE, CLAYSTONE	4 4	IRONSTONE GRAV	EL
	SAND (SP, SW)		LIMESTONE	XWWW	ORGANIC MATERIA	ΔL
2 00 g	GRAVEL (GP, GW)		PHYLLITE, SCHIST	OTHE	R MATERIALS	
	SANDY CLAY (CL, CH)		TUFF	70P	CONCRETE	
	SILTY CLAY (CL, CH)	不是	GRANITE, GABBRO		BITUMINOUS CONC COAL	CRETE
	CLAYEY SAND (SC)	+ + + + + + + + + + + +	DOLERITE, DIORITE		COLLUVIUM	
	SILTY SAND (SM)		BASALT, ANDESITE			
19/9	GRAVELLY CLAY (CL, CH)		QUARTZITE			
8 68 60	CLAYEY GRAVEL (GC)					
	SANDY SILT (ML)					
~~~~~	PEAT AND ORGANIC SOILS					



	Field Identification Procedures (Excluding particles larger than 75 µm and basing fractions on estimated weights)			Group Symbols	Typical Names	Information Required for Describing Soils			Laboratory Classification Criteria																	
	in i	Clean gravels (little or no fines)	Wide range i		nd substantial diate particle	GW	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name: indicate ap- proximate percentages of sand and gravel; maximum size;		es of gravel and sand from grain size states of fines (fraction smaller than 75 segrained soils are classified as follows: GW, GP, SW, SP GW, GC, SW, SC Bonderline cass requiring use of dual symbols	$C_{\rm U} = \frac{D_{60}}{D_{10}}$ Greater that $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Between	n 4 ween 1 and 3														
	vels nalf of larger ieve si	Clean			range of sizes sizes missing	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	and grave; maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name		from g smalle ified as	Not meeting all gradation	equirements for GW														
s rial is sizeb ye)	Gravels More than half of cog fraction is larger tha 4 mm steve size	s with	Nonplastic fi cedures see	nes (for ident	ification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	uo	and sand sand (fraction ils are class, SP, SP, SP, SP, SP, er cases re mbols	'A' line, or PI less	Above "A" line with PI between 4 and 7 are borderline cases														
of mate	Mor	Gravels with fines (appreciable amount of fines)	Plastic fines (f	or identifications)	on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation.	field identification	gravel an of fines (fined soils: W, GP, S M, GC, S orderline qual sym	Atterberg limits above "A" line, with PI greater than 7	requiring use of dual symbols														
Coarse-grained soils More than half of material is larger than 75 µm sieve size ^h article visible to naked eye)	Sands tinn half of coarse tion is smaller than 4 mm sieve size	Clean sands (little or no fines)		n grain sizes ar f all intermed		SW	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics  Example: Silty sand, gravelly; about 20%	under field ide	Determine percentages of g curve curve Depending on percentage of mrs sieve size) coarse grain Less than 5% GW More than 12% GW S% to 12% Bot of d	$C_{\rm U} = \frac{D_{60}}{D_{10}}$ Greater that $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Betw	n 6 reen 1 and 3														
More larger	nds nalf of smaller ieve si	Clea		y one size or a intermediate		SP	Poorly graded sands, gravelly sands, little or no fines	hard, angular gravel par- ticles 12 mm maximum size: rounded and subangular sand grains coarse to fine, about	given und	on percer size) con persize) co	Not meeting all gradation	requirements for SW														
smallest p		Sands with fines (appreciable amount of fines)	Nonplastic fit cedures,	nes (for ident see ML below)	ification pro-	SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place;		15% non-plastic fines with low dry strength; well com- pacted and moist in place;	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	low dry strength; well com- pacted and moist in place;	low dry strength; well com- pacted and moist in place;	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	low dry strength; well com- pacted and moist in place;	low dry strength; well com- pacted and moist in place;	low dry strength; well com- pacted and moist in place;	low dry strength; well com-	low dry strength; well com- pacted and moist in place;	low dry strength; well com- pacted and moist in place;	ons as gi	termine curve pending um sieve Less th More t	Atterberg limits below "A" line or PI less than 5	Above "A" line with PI between 4 and 7 are borderline cases
the	More I fracti	Sand B (appro amo	Plastic fines (for identification see CL below)				Clayey sands, poorly graded sand-clay mixtures	anuviai sanu, (SM)	l ë		"A" line with PI greater than 7	requiring use of dual symbols														
apont	Identification I	Procedures of	on Fraction Smaller than 380 µm Sieve Size						Ĕ																	
[2.			Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying the	60 Comparin	g soils at equal liquid limit															
Fine-grained soils More than half of material is <i>smaller</i> than 75 µm steve size (The 75 µm sieve size	Silts and clays liquid limit	OC HINE	None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	grain size curve in	40 Toughnes	s and dry strength increase asing plasticity index	, Miles														
grained s f of mate f m siev (The 7	Silts liquites	high very slow		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses		Plasticity 20		OH																	
hall n 7:			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	Use	10 CL	OL OI	MH														
re than	than Silts and clays liquid limit greater than 50		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		0 10 i	20 30 40 50 60 70	80 90 100														
ŭ	and uid I ater 50		High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:			Liquid limit															
	Silts		Medium to	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of		for labora	Plasticity chart tory classification of fin	e grained soils														
Н	Highly Organic Soils  Readily identified by colour, odour, spongy feel and frequently by fibrous texture		Pt	Peat and other highly organic soils	fine sand; numerous vertical root holes; firm and dry in place; loess; (ML)				J																	

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.



#### **LOG SYMBOLS**

LOG COLUMN	SYMBOL	DEFINITION				
		Standing water level. Time delay following completion of drilling may be shown.				
Groundwater Record	<del>-c-</del>	Extent of borehole collapse shortly after drilling.				
		Groundwater seepage into borehole or excavation noted during drilling or excavation.				
	ES	Soil sample taken over depth indicated, for environmental analysis.				
	U50 DB	Undisturbed 50mm diameter tube sample taken over depth indicated.  Bulk disturbed sample taken over depth indicated.				
Samples	DS	Small disturbed bag sample taken over depth indicated.				
	ASB	Soil sample taken over depth indicated, for asbestos screening.				
	ASS	Soil sample taken over depth indicated, for acid sulfate soil analysis.				
	SAL	Soil sample taken over depth indicated, for salinity analysis.				
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual show blows per 150mm penetration. 'R' as noted below.				
	5	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual				
Field Tests	Nc = 7	figures show blows per 150mm penetration for 60 degree solid cone driven by SPT hammer.				
Field Tests		'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25	Vana share reading in I-De of Hadrained Chara Chronath				
		Vane shear reading in kPa of Undrained Shear Strength.				
	PID = 100	Photoionisation detector reading in ppm (Soil sample heads pace test).				
Moisture (Cohesive Soils)	MC>PL	Moisture content estimated to be greater than plastic limit.				
(Coriesive Solis)	MC≪PL MC <pl< td=""><td colspan="5">MC≈PL Moisture content estimated to be approximately equal to plastic limit.  MC<pl be="" content="" estimated="" less="" limit.<="" moisture="" plastic="" td="" than="" to=""></pl></td></pl<>	MC≈PL Moisture content estimated to be approximately equal to plastic limit.  MC <pl be="" content="" estimated="" less="" limit.<="" moisture="" plastic="" td="" than="" to=""></pl>				
(Cohesionless)	D	DRY - Runs freely through fingers.				
(20110010111000)	М	MOIST - Does not run freely but no free water visible on soil surface.				
	W	WET - Free water visible on soil surface.				
Strength (Consistency)	VS S	VERY SOFT – Unconfined compressive strength less than 25kPa SOFT – Unconfined compressive strength 25-5 0kPa				
Cohesive Soils	F	FIRM - Unconfined compressive strength 50-1 00kPa				
	St	STIFF - Unconfined compressive strength 100- 200kPa				
	VSt	VERY STIFF - Unconfined compressive strength 200- 400kPa				
	Н	HARD – Unconfined compressive strength greater than 400kPa				
	( )	Bracketed symbol indicates estimated consistency based on tactile examination or other tests.				
Density Index/		Density Index (ID) Range (%) SPT ' N' Value Range (Blows/300mm )				
Relative Density	VL	Very Loose <15 0-4				
(Cohesionless Soils)	L	Loose 15-35 4-10				
	MD	Medium Dense 35-65 10-30				
	D	Dense 65-85 30-50				
	VD ( )	Very Dense >85 >50  Bracketed symbol indicates estimated density based on ease of drilling or other tests.				
		, , , , , , , , , , , , , , , , , , , ,				
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kPa on representative undisturbed material unless noted otherwise				
Remarks	'V' bit	Hardened steel 'V' shaped bit.				
	'TC' bit	Tungsten carbide wing bit.				
	<b>T</b> ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.				



#### LOG SYMBOLS CONTINUED

#### **ROCK STRENGTH**

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	Is (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL	0.00	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	М	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	Н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	ЕН		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

#### **ROCK STRENGTH**

ABBREVIATION	DESCRIPTION	NOTES
Be CS	Bedding Plane Parting Clay Seam	Defect orientations measured relative to the normal to (i.e. relative to horizontal for vertical holes)
J	Joint	
Р	Planar	
Un	Undulating	
S	Smooth	
R	Rough	
IS	Iron stained	
XWS	Extremely Weathered Seam	
Cr	Crushed Seam	
60t	Thickness of defect in millimetres	



**Appendix C: Laboratory Report/s & COC Documents** 



### **SAMPLE RECEIPT ADVICE**

Client Details	
Client	Environmental Investigation Services
Attention	Jake Cashman

Sample Login Details					
Your Reference	E29923K, Wetherill Park				
Envirolab Reference	165176				
Date Sample Received	12/04/2017				
Date Instructions Received	12/04/2017				
Date Results Expected to be Reported	21/04/2017				

Sample Condition						
Samples received in appropriate condition for analysis	YES					
No. of Samples Provided	5 waters					
Turnaround Time Requested	Standard					
Temperature on receipt (°C)	19.5					
Cooling Method	Ice Pack					
Sampling Date Provided	YES					

Comments
Samples will be held for 1 month for water samples and 2 months for soil samples from date of
receipt of samples
_

### Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com	.au Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page



Sample Id	VOCs in water	vTRH(C6- C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	Electrical Conductivity	Н	
MW301	✓	✓	✓	✓	✓	✓	✓	
MW302	✓	✓	✓	✓	✓	✓	✓	
MW303	✓	✓	✓	✓	✓	<b>√</b>	✓	
DupJDCW		<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>			
TS		<b>√</b>						

The ' $\checkmark$ ' indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.

#### SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB 12 ASHLEY S CHATSWOO! P: (02) 99106 F: (02) 99106 Attention: All	TREET D NSW 2 200 201		EIS Job Number: Date Results Required: Page:		E29923K STANDARD					FROM: ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 50 Attention: Jake Cashman								
Location:	Wetheri	II Park	MILE E						Sam	mple Preserved in Esky on Ice								
Sampler:	JDC								_	T	ests R	equir	ed		_	-		
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 3L	VOCs	pH/EC	pH/EC	TRHBTEX								
12/04/2017	1	MW301	G1, G2, 4x V, H, PVC	0	Groundwater	×	×	×										
12/04/2017	1	MW302	G1, G2, 4x V, H, PVC	0	Groundwater	×	×	×										
12/04/2017	3	MW303	G1, G2, 4x V, H, PVC	0	Groundwater	×	×	к										
12/04/2017	4	DupJIDCW	G1, G2, 2x V. H.	- 2	Groundwater	×												
12/04/2017	5	TS	v	*	Water					x								
		Dete Tups Reof Ten	Received: 19.15 reprised by Je secrited: 19.15 Received: 19.15 reprised: 19.15 reprised: 19.15 reprised: 19.15	17 95°C														
200		Ser detection limits	unity. Wood Bloom			Gt -			er Gl	ess Bo				nber G	lass B	ottle		
Relinguished	7.41		Date: / /	017	\$0.00	PVC - HDPE Plastic Bottles   Time:   Received By:   D			Date: /2 /	4/17								



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd. - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 165176

Client:

**Environmental Investigation Services** 

PO Box 976 North Ryde BC NSW 1670

Attention: Jake Cashman

Sample log in details:

Your Reference: E29923K, Wetherill Park

No. of samples: 5 waters

Date samples received / completed instructions received 12/04/17 / 12/04/17

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 21/04/17 / 21/04/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

#### **Results Approved By:**

Envirolab Reference: 165176 Revision No: R 00

General Manager



	1	<b>_</b>	<b>_</b>	<b>_</b>		
VOCs in water	LINITO	105170.1	405470.0	405470.0		
Our Reference:	UNITS	165176-1	165176-2	165176-3		
Your Reference		MW301	MW302	MW303		
Date Sampled		12/04/2017	12/04/2017	12/04/2017		
Type of sample		Water	Water	Water		
Date extracted	-	13/04/2017	13/04/2017	13/04/2017		
Date analysed	_	13/04/2017	13/04/2017	13/04/2017		
Dichlorodifluoromethane	μg/L	<10	<10	<10		
Chloromethane	μg/L	<10	<10	<10		
Vinyl Chloride	μg/L	<10	<10	<10		
Bromomethane	μg/L	<10	<10	<10		
Chloroethane	μg/L	<10	<10	<10		
Trichlorofluoromethane	μg/L	<10	<10	<10		
1,1-Dichloroethene	μg/L	<1	<1	<1		
Trans-1,2-dichloroethene	μg/L	<1	<1	<1		
1,1-dichloroethane	μg/L	<1	<1	<1		
Cis-1,2-dichloroethene	μg/L	<1	<1	<1		
Bromochloromethane	μg/L	<1	<1	<1		
Chloroform	μg/L	<1	<1	<1		
2,2-dichloropropane	μg/L	<1	<1	<1		
1,2-dichloroethane	μg/L	<1	<1	<1		
1,1,1-trichloroethane	μg/L	<1	<1	<1		
1,1-dichloropropene	μg/L	<1	<1	<1		
Cyclohexane	μg/L	<1	<1	<1		
Carbon tetrachloride	μg/L	<1	<1	<1		
Benzene	μg/L	<1	<1	<1		
Dibromomethane	μg/L	<1	<1	<1		
1,2-dichloropropane	μg/L	<1	<1	<1		
Trichloroethene			<1	<1		
Bromodichloromethane	μg/L	<1 <1	<1	<1		
trans-1,3-dichloropropene	μg/L	<1	<1	<1		
cis-1,3-dichloropropene	μg/L	<1	<1	<1		
	µg/L	<1				
1,1,2-trichloroethane Toluene	μg/L	<1	<1 <1	<1 <1		
	µg/L					
1,3-dichloropropane	μg/L	<1	<1	<1		
Dibromochloromethane	µg/L	<1	<1	<1		
1,2-dibromoethane	μg/L	<1	<1	<1		
Tetrachloroethene	μg/L	<1	<1	<1		
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1		
Chlorobenzene	μg/L	<1	<1	<1		
Ethylbenzene	μg/L	<1	<1	<1		
Bromoform	μg/L	<1	<1	<1		
m+p-xylene	μg/L	<2	<2	<2		
Styrene	μg/L	<1	<1	<1		
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1		
o-xylene	μg/L	<1	<1	<1		

Envirolab Reference: 165176 Revision No: R 00

VOCs in water				
Our Reference:	UNITS	165176-1	165176-2	165176-3
Your Reference		MW301	MW302	MW303
Date Sampled	-	12/04/2017	12/04/2017	12/04/2017
Type of sample		Water	Water	Water
1,2,3-trichloropropane	μg/L	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	104	103	105
Surrogate toluene-d8	%	100	97	99
Surrogate 4-BFB	%	104	103	102

	ı		ı	ı		
vTRH(C6-C10)/BTEXNinWater						
Our Reference:	UNITS	165176-1	165176-2	165176-3	165176-4	165176-5
Your Reference		MW301	MW302	MW303	DupJDCW	TS
	-					
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/04/2017	13/04/2017	13/04/2017	13/04/2017	12/04/2017
Date analysed	-	13/04/2017	13/04/2017	13/04/2017	13/04/2017	12/04/2017
TRHC6 - C9	μg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10	μg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10	<10	<10	[NA]
Benzene	μg/L	<1	<1	<1	<1	93%
Toluene	μg/L	<1	<1	<1	<1	94%
Ethylbenzene	μg/L	<1	<1	<1	<1	100%
m+p-xylene	μg/L	<2	<2	<2	<2	101%
o-xylene	μg/L	<1	<1	<1	<1	100%
Naphthalene	μg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	104	103	105	102	96
Surrogate toluene-d8	%	100	97	99	99	99
Surrogate 4-BFB	%	104	103	102	105	101

svTRH (C10-C40) in Water					
Our Reference:	UNITS	165176-1	165176-2	165176-3	165176-4
Your Reference		MW301	MW302	MW303	DupJDCW
Date Sampled Type of sample		12/04/2017 Water	12/04/2017 Water	12/04/2017 Water	12/04/2017 Water
Date extracted	-	13/04/2017	13/04/2017	13/04/2017	13/04/2017
Date analysed	-	13/04/2017	13/04/2017	13/04/2017	13/04/2017
TRHC10 - C14	μg/L	<50	<50	<50	<50
TRHC 15 - C28	μg/L	400	<100	<100	510
TRHC29 - C36	μg/L	<100	<100	<100	<100
TRH>C10 - C16	μg/L	69	<50	<50	88
TRH>C10 - C16 less Naphthalene (F2)	μg/L	69	<50	<50	88
TRH>C16 - C34	μg/L	350	<100	<100	470
TRH>C34 - C40	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	77	90	89	89

PAHs in Water - Low Level					
Our Reference:	UNITS	165176-1	165176-2	165176-3	165176-4
Your Reference		MW301	MW302	MW303	DupJDCW
D . O . I .	-	10/01/0017	10/01/0017	10/01/0017	10/01/001
Date Sampled Type of sample		12/04/2017 Water	12/04/2017 Water	12/04/2017 Water	12/04/2017 Water
Type of Sample		vvalei	vvalei	vvalei	vvalei
Date extracted	=	13/04/2017	13/04/2017	13/04/2017	13/04/2017
Date analysed	-	18/04/2017	18/04/2017	18/04/2017	18/04/2017
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94	127	126	111

HM in water - dissolved					
Our Reference:	UNITS	165176-1	165176-2	165176-3	165176-4
Your Reference		MW301	MW302	MW303	DupJDCW
Date Sampled Type of sample		12/04/2017 Water	12/04/2017 Water	12/04/2017 Water	12/04/2017 Water
Date prepared	-	18/04/2017	18/04/2017	18/04/2017	18/04/2017
Date analysed	-	18/04/2017	18/04/2017	18/04/2017	18/04/2017
Arsenic-Dissolved	μg/L	<1	1	3	<1
Cadmium-Dissolved	μg/L	<0.1	0.3	0.7	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1
Copper-Dissolved	μg/L	6	<1	<1	8
Lead-Dissolved	μg/L	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	33	22	27	35
Zinc-Dissolved	μg/L	38	18	28	36

Miscellaneous Inorganics				
Our Reference:	UNITS	165176-1	165176-2	165176-3
Your Reference		MW301	MW302	MW303
	-			
Date Sampled		12/04/2017	12/04/2017	12/04/2017
Type of sample		Water	Water	Water
Date prepared	-	13/04/2017	13/04/2017	13/04/2017
Date analysed	-	13/04/2017	13/04/2017	13/04/2017
pН	pH Units	6.8	7.0	7.0
Electrical Conductivity	μS/cm	2,800	19,000	21,000

Method ID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-022	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.

**Client Reference:** E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank **Duplicate** Duplicate results Spike Sm# Spike % Sm# Recovery Base || Duplicate || %RPD VOCs in water Date extracted 13/04/2 [NT] [NT] LCS-W1 13/04/2017 017 13/04/2 LCS-W1 13/04/2017 Date analysed [NT] [NT] 017 Org-013 [NR] Dichlorodifluoromethane µg/L 10 <10 [NT] [NT] [NR] Chloromethane Org-013 μg/L 10 <10 [NT] [NT] [NR] [NR] Vinyl Chloride Org-013 [NT] [NR] [NR] μg/L 10 <10 [NT] Org-013 Bromomethane µg/L 10 <10 [NT] [NT] [NR] [NR] Org-013 Chloroethane μg/L 10 <10 [NT] [NT] [NR] [NR] Org-013 [NR] Trichlorofluoromethane µg/L 10 <10 [NT] [NT] [NR] Org-013 1,1-Dichloroethene µg/L 1 <1 [NT] [NT] [NR] [NR] Trans-1,2μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] dichloroethene LCS-W1 98% 1,1-dichloroethane Org-013 [NT] [NT] µg/L 1 <1 Cis-1,2-dichloroethene 1 Org-013 <1 [NT] [NT] [NR] [NR] μg/L Bromochloromethane 1 Org-013 [NT] [NT] [NR] [NR] μg/L <1 Org-013 Chloroform μg/L [NT] [NT] LCS-W1 99% 1 <1 2,2-dichloropropane Org-013 [NT] [NT] [NR] [NR] μg/L 1 <1 1,2-dichloroethane 1 Org-013 [NT] [NT] LCS-W1 98% µg/L <1 LCS-W1 1,1,1-trichloroethane Org-013 [NT] [NT] 99% μg/L 1 <1 1,1-dichloropropene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] μg/L 1 Org-013 [NT] [NT] [NR] [NR] Cyclohexane <1 Carbon tetrachloride Org-013 [NT] [NR] [NR] μg/L 1 <1 [NT] Benzene Org-013 [NT] [NT] [NR] [NR] μg/L 1 <1 Dibromomethane μg/L Org-013 [NT] [NR] [NR] 1 <1 [NT] Org-013 [NR] 1,2-dichloropropane μg/L 1 <1 [NT] [NT] [NR] Trichloroethene Org-013 [NT] LCS-W1 121% µg/L 1 <1 [NT] Bromodichloromethane Org-013 LCS-W1 μg/L 1 [NT] [NT] 99% <1 trans-1,3μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] dichloropropene [NT] cis-1,3-dichloropropene Org-013 [NT] [NR] µg/L 1 <1 [NR] Org-013 1,1,2-trichloroethane 1 [NT] [NT] [NR] [NR] µg/L <1 Org-013 Toluene μg/L 1 <1 [NT] [NT] [NR] [NR] Org-013 [NR] 1,3-dichloropropane μg/L 1 <1 [NT] [NT] [NR] Dibromochloromethane 1 Org-013 [NT] [NT] LCS-W1 97% µg/L <1 Org-013 1,2-dibromoethane µg/L 1 <1 [NT] [NT] [NR] [NR] Tetrachloroethene Org-013 LCS-W1 μg/L 1 <1 [NT] [NT] 98% 1,1,1,2μg/L 1 Org-013 [NT] [NT] [NR] [NR] <1 tetrachloroethane Chlorobenzene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Org-013 Ethylbenzene μg/L 1 <1 [NT] [NT] [NR] [NR] Bromoform 1 Org-013 [NT] [NT] [NR] [NR] μg/L <1 Org-013 m+p-xylene µg/L 2 <2 [NT] [NT] [NR] [NR] Styrene μg/L 1 Org-013 [NT] [NT] [NR] [NR] <1 1,1,2,2-Org-013 1 [NT] [NT] [NR] [NR] µg/L <1 tetrachloroethane o-xylene µg/L 1 Org-013 <1 [NT] [NT] [NR] [NR]

Client Reference: E29923K, Wetherill Park UNITS QUALITYCONTROL PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery VOCs in water Base II Duplicate II % RPD 1,2,3-trichloropropane 1 Org-013 <1 [NT] [NT] [NR] [NR] μg/L Org-013 [NT] [NT] [NR] [NR] Isopropylbenzene μg/L 1 <1 Org-013 Bromobenzene 1 [NT] [NR] [NR] µg/L <1 [NT] n-propyl benzene Org-013 [NT] [NT] [NR] [NR] μg/L 1 <1 2-chlorotoluene μg/L 1 Org-013 [NT] [NT] [NR] [NR] <1 Org-013 [NR] 4-chlorotoluene µg/L 1 <1 [NT] [NT] [NR] 1,3,5-trimethyl benzene Org-013 [NR] μg/L 1 <1 [NT] [NT] [NR] μg/L Tert-butyl benzene 1 Org-013 [NT] [NT] [NR] [NR] <1 Org-013 [NR] 1,2,4-trimethyl benzene μg/L 1 <1 [NT] [NT] [NR] 1,3-dichlorobenzene Org-013 [NR] μg/L 1 <1 [NT] [NT] [NR] Sec-butyl benzene Org-013 [NT] [NT] [NR] [NR] μg/L 1 <1 Org-013 1,4-dichlorobenzene μg/L 1 <1 [NT] [NT] [NR] [NR] 4-isopropyl toluene μg/L 1 Org-013 <1 [NT] [NT] [NR] [NR] Org-013 [NT] [NR] [NR] 1,2-dichlorobenzene μg/L 1 <1 [NT] Org-013 n-butyl benzene μg/L 1 <1 [NT] [NT] [NR] [NR] Org-013 1,2-dibromo-3μg/L 1 [NT] [NT] [NR] [NR] <1 chloropropane Org-013 [NT] [NR] [NR] 1,2,4-trichlorobenzene μg/L 1 [NT] <1 Org-013 Hexachlorobutadiene μg/L 1 <1 [NT] [NT] [NR] [NR] Org-013 1,2,3-trichlorobenzene μg/L 1 <1 [NT] [NT] [NR] [NR] Org-013

103

99

103

Org-013

Org-013

[NT]

[NT]

[NT]

[NT]

[NT]

[NT]

LCS-W1

LCS-W1

LCS-W1

102%

101%

105%

Envirolab Reference: 165176 Revision No: R 00

%

%

%

Surrogate Dibromofluoromethane

Surrogate toluene-d8

Surrogate 4-BFB

Client Reference: E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank **Duplicate** Duplicate results Spike Sm# Spike % Sm# Recovery Base II Duplicate II % RPD vTRH(C6-C10)/BTEXNin Water Date extracted 13/04/2 [NT] [NT] LCS-W1 13/04/2017 017 Date analysed 13/04/2 LCS-W1 13/04/2017 [NT] [NT] 017 Org-016 LCS-W1 TRHC6 - C9 µg/L 10 <10 [NT] [NT] 100% μg/L Org-016 LCS-W1 100% TRHC6 - C10 10 <10 [NT] [NT] Org-016 LCS-W1 99% Benzene μg/L <1 [NT] [NT] 1 Org-016 Toluene µg/L 1 <1 [NT] [NT] LCS-W1 97% μg/L Ethylbenzene 1 Org-016 [NT] [NT] LCS-W1 101% <1 2 Org-016 LCS-W1 m+p-xylene µg/L <2 [NT] [NT] 102% o-xylene µg/L 1 Org-016 <1 [NT] [NT] LCS-W1 102% Naphthalene μg/L 1 Org-013 [NT] [NT] [NR] [NR] <1 Org-016 103 [NT] [NT] LCS-W1 102% Surrogate % Dibromofluoromethane % Org-016 99 [NT] [NT] LCS-W1 101% Surrogate toluene-d8 LCS-W1 % Org-016 103 [NT] [NT] 105% Surrogate 4-BFB UNITS QUALITYCONTROL PQL METHOD Blank **Duplicate** Duplicate results Spike Sm# Spike % Sm# Recovery svTRH(C10-C40)in Base II Duplicate II % RPD Water LCS-W1 18/04/2 [NT] Date extracted [NT] 18/04/2017 017 18/04/2 Date analysed [NT] [NT] LCS-W1 18/04/2017 017 Org-003 LCS-W1 91% TRHC₁₀ - C₁₄ µg/L 50 <50 [NT] [NT] Org-003 LCS-W1 TRHC₁₅ - C₂₈ µg/L 100 <100 [NT] [NT] 91% 100 Org-003 <100 [NT] [NT] LCS-W1 122% TRHC29 - C36 μg/L TRH>C10 - C16 Org-003 LCS-W1 91% μg/L 50 <50 [NT] [NT] TRH>C16 - C34 µg/L 100 Org-003 <100 [NT] [NT] LCS-W1 91% μg/L 100 Org-003 <100 [NT] [NT] LCS-W1 122% TRH>C34 - C40 Org-003 LCS-W1 86% Surrogate o-Terphenyl % 90 [NT] [NT] UNITS QUALITYCONTROL PQL Blank **METHOD Duplicate Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Water - Low Base II Duplicate II % RPD Level 13/04/2 LCS-W2 Date extracted [NT] [NT] 13/04/2017 017 18/04/2 LCS-W2 18/04/2017 Date analysed [NT] [NT] 017 Naphthalene µg/L 0.2 Org-012 < 0.2 [NT] [NT] LCS-W2 70% Org-012 Acenaphthylene μg/L 0.1 <0.1 [NT] [NT] [NR] [NR] Org-012 [NR] Acenaphthene μg/L 0.1 <0.1 [NT] [NT] [NR] Fluorene 0.1 Org-012 <0.1 [NT] [NT] LCS-W2 74% μg/L Phenanthrene 0.1 Org-012 <0.1 [NT] [NT] LCS-W2 80% μg/L Org-012 Anthracene 0.1 <0.1 [NT] [NT] [NR] [NR] μg/L Fluoranthene 0.1 Org-012 <0.1 [NT] [NT] LCS-W2 79% μg/L Pyrene μg/L 0.1 Org-012 <0.1 [NT] [NT] LCS-W2 76%

Client Reference: E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery PAHs in Water - Low Base II Duplicate II % RPD Level Benzo(a)anthracene Org-012 [NT] [NT] [NR] [NR] μg/L 0.1 <0.1 LCS-W2 74% Chrysene μg/L 0.1 Org-012 <0.1 [NT] [NT] Org-012 Benzo(b,j+k) [NR] µg/L 0.2 < 0.2 [NT] [NT] [NR] fluoranthene Org-012 LCS-W2 87% Benzo(a)pyrene μg/L 0.1 <0.1 [NT] [NT] [NR] Indeno(1,2,3-c,d)pyrene 0.1 Org-012 [NT] [NT] [NR] μg/L <0.1 Org-012 Dibenzo(a,h)anthracene μg/L 0.1 <0.1 [NT] [NT] [NR] [NR] Org-012 Benzo(g,h,i)perylene μg/L 0.1 <0.1 [NT] [NT] [NR] [NR] Org-012 LCS-W2 109% % 131 [NT] [NT] Surrogate p-Terphenyld14 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Spike Sm# Duplicate results Spike % Sm# Recovery HM in water - dissolved Base II Duplicate II %RPD Date prepared 18/04/2 165176-2 18/04/2017 || 18/04/2017 LCS-W2 18/04/2017 017 18/04/2 165176-2 LCS-W2 18/04/2017 Date analysed 18/04/2017 || 18/04/2017 017 1 Metals-022 LCS-W2 Arsenic-Dissolved µg/L <1 165176-2 1||1||RPD:0 100% Cadmium-Dissolved Metals-022 0.3||0.3||RPD:0 LCS-W2 105% μg/L 0.1 <0.1 165176-2 LCS-W2 Chromium-Dissolved Metals-022 165176-2 90% μg/L 1 <1 <1||<1 Metals-022 LCS-W2 Copper-Dissolved µg/L 1 <1 165176-2 <1||<1 91% LCS-W2 Metals-022 Lead-Dissolved μg/L 1 <1 165176-2 <1||<1 110% 0.05 Mercury-Dissolved Metals-021 <0.05 165176-2 LCS-W2 96% µg/L <0.05|| [N/T] Metals-022 LCS-W2 Nickel-Dissolved µg/L 1 <1 165176-2 22 | 23 | RPD: 4 92% μg/L Metals-022 LCS-W2 98% Zinc-Dissolved 1 <1 165176-2 18||19||RPD:5 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD Date prepared 13/04/2 [NT] [NT] LCS-W1 13/04/2017

017

13/04/2

017

[NT]

<1

Inorg-001

Inorg-002

[NT]

[NT]

[NT]

Envirolab Reference: 165176 Revision No: R 00

pH Units

µS/cm

1

Date analysed

рΗ

**Electrical Conductivity** 

LCS-W1

LCS-W1

LCS-W1

[NT]

[NT]

[NT]

13/04/2017

101%

106%

# **Report Comments:**

8 HM in Water - Dissolved:

For the determination of dissolved metals in samples 1 and 4, the unpreserved sample was filtered through 0.45um filter at the lab due to the appearance of colloids and/or sediment in the supplied HNO3 bottle.

Asbestos ID was analysed by Approved Identifier: Not applicable for this job Asbestos ID was authorised by Approved Signatory: Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required **RPD: Relative Percent Difference** NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Revision No: R 00

Envirolab Reference: 165176 Page 14 of 15

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 165176 Page 15 of 15 Revision No: R 00



### **SAMPLE RECEIPT ADVICE**

Client Details	
Client	Environmental Investigation Services
Attention	Jake Cashman

Sample Login Details	
Your Reference	E29923K, Wetherill Park
Envirolab Reference	164998
Date Sample Received	10/04/2017
Date Instructions Received	10/04/2017
Date Results Expected to be Reported	19/04/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	49 Soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	13.5
Cooling Method	Ice
Sampling Date Provided	YES

# Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

# Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au				

Sample and Testing Details on following page



BH301-0.26-0.4	Sample Id	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	Оп НоІд
BH301-0.5-0.95		(010)	SVTR		Org Pes	Orga	1	Aci	Asb	
BH301-1.5-1.7	BH301-0.26-0.4	✓	✓	✓	✓	✓	✓	✓	✓	
BH301-3.0-3.2 BH302-0.25-0.45  BH302-0.7-0.95 BH302-1.7-1.95 BH302-4.0-4.5 BH303-0.5-0.8 BH303-0.5-0.8 BH303-0.5-0.8 BH303-0.5-0.8 BH303-0.5-0.8 BH303-0.5-0.8 BH303-0.5-0.7 BH306-0.13-0.3  BH306-0.13-0.3  BH306-1.8-2.0 BH306-3.6-3.8 BH306-3.6-3.8 BH308-3.1-1.3 BH308-3.1-1.3 BH308-3.1-1.3 BH309-0.21-0.4 BH309-0.21-0.4 BH309-3.5-3.7 BH310-1.5-0.35  BH310-1.5-0.35  BH310-1.5-0.35  BH310-1.5-0.5 BH306-1.5-0.5 BH310-1.5-0.5 BH311-0.3-0.5 BH311-0.3-0.5 BH311-0.3-0.5 BH311-0.3-0.5 BH313-0.3-0.5 BH313-0.5-0.7 BH313-0.5-0.7 BH313-0.5-0.7 BH313-0.5-0.7 BH313-0.5-0.7 BH313-0.5-0.7 BH313-0.5-0.7	BH301-0.5-0.95									✓
BH302-0.25-0.45	BH301-1.5-1.7									✓
BH302-0.7-0.95	BH301-3.0-3.2	✓	✓	✓				✓		
BH302-1.7-1.95	BH302-0.25-0.45	✓	✓	✓	✓	✓	✓	✓	✓	
BH302-4.0-4.5	BH302-0.7-0.95									✓
BH303-0.5-0.8	BH302-1.7-1.95									<b>√</b>
BH303-0.8-0.95	BH302-4.0-4.5									✓
BH303-0.8-0.95	BH303-0.5-0.8	✓	✓	✓	✓	✓	✓	✓	✓	
BH304-0.6-0.8	BH303-0.8-0.95									<b>√</b>
BH305-0.15-0.35	BH304-0.15-0.3	✓	✓	✓	✓	✓	✓	✓	✓	
BH305-0.15-0.35	BH304-0.6-0.8									<b>√</b>
BH305-0.5-0.7       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓	BH305-0.15-0.35	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>	
BH306-0.13-0.3										/
BH306-0.8-1.0  BH306-1.8-2.0  BH306-3.0-3.2  V V V SH308-0.3-0.6  V SH308-0.3-0.6  V SH309-0.21-0.4  V SH309-0.21-0.4  V SH309-3.5-3.7  SH310-0.15-0.35  SH311-0.12-0.3  SH311-0.12-0.3  SH311-0.12-0.3  SH311-0.12-0.3  SH311-0.12-0.3  SH311-0.12-0.3  SH311-0.3-0.5  SH311-0.1-0.3  SH311-0.3-0.5  SH311-0.3-0.5  SH313-0.3-0.5  SH313-0.3-0.5  SH313-0.5-0.7  SH313-0.5-0.7  SH313-0.5-0.7  SH313-0.5-0.7  SH313-0.5-0.7		/		/	<b>√</b>	<b>√</b>	/	/	/	
BH306-1.8-2.0       ✓         BH306-3.0-3.2       ✓         BH306-3.6-3.8       ✓         BH308-0.3-0.6       ✓         BH308-1.1-1.3       ✓         BH309-0.21-0.4       ✓         BH309-1.0-1.2       ✓         BH309-1.0-1.2       ✓         BH309-3.5-3.7       ✓         BH310-0.15-0.35       ✓         BH311-0.12-0.3       ✓         BH311-0.3-0.5       ✓         BH311-0.3-0.5       ✓         BH312-1.1-1.3       ✓         BH312-0.0-2.2       ✓         BH313-0.3-0.5       ✓         BH313-0.5-0.7       ✓         BH313-0.5-0.7       ✓         BH313-3.6-3.8       ✓		<u> </u>	,	<u> </u>	•	•		,	<u> </u>	/
BH306-3.0-3.2       √       √       √         BH306-3.6-3.8       √       √       √       √         BH308-0.3-0.6       √       √       √       √       ✓         BH308-1.1-1.3       √       √       √       √       ✓         BH309-0.21-0.4       √       √       √       ✓       ✓       ✓         BH309-1.0-1.2       √       √       √       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓										
BH306-3.6-3.8       ✓         BH308-0.3-0.6       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓ <td< td=""><td></td><td>/</td><td>/</td><td>/</td><td></td><td></td><td></td><td>/</td><td></td><td><u> </u></td></td<>		/	/	/				/		<u> </u>
BH308-0.3-0.6		•	•	<u> </u>				,		/
BH308-1.1-1.3       ✓         BH309-0.21-0.4       ✓       ✓       ✓       ✓       ✓       ✓         BH309-1.0-1.2       ✓       ✓       ✓       ✓       ✓       ✓       ✓         BH309-2.0-2.2       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓ <td></td> <td>/</td> <td>/</td> <td>/</td> <td>/</td> <td>/</td> <td>/</td> <td>/</td> <td>1</td> <td>,</td>		/	/	/	/	/	/	/	1	,
BH309-0.21-0.4       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓		•	•	<u> </u>	•	•	1	,	<u> </u>	/
BH309-1.0-1.2       J         BH309-2.0-2.2       J         J       J         BH309-3.5-3.7       J         BH310-0.15-0.35       J         J       J         BH310-0.4-0.6       J         BH311-0.12-0.3       J         J       J         BH311-0.3-0.5       J         BH312-0.11-0.3       J         J       J         BH312-1.1-1.3       J         BH313-0.3-0.5       J         J       J         BH313-0.5-0.7       J         BH313-2.5-2.7       J         BH313-3.6-3.8       J		/	/	/	/	/	/	/	1	· ·
BH309-2.0-2.2		•	•	<u> </u>	•	•	1	,	<u> </u>	/
BH309-3.5-3.7       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J       J		_/	/	/	_/	_/	_/	/	_/	<u> </u>
BH310-0.15-0.35       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓		· ·	<b>V</b>	· ·	•	•	•	· ·	•	/
BH310-0.4-0.6       J         BH311-0.12-0.3       J         BH311-0.3-0.5       J         BH312-0.11-0.3       J         J       J         BH312-1.1-1.3       J         BH312-2.0-2.2       J         BH313-0.3-0.5       J         BH313-0.5-0.7       J         BH313-2.5-2.7       J         BH313-3.6-3.8       J		./	_/		./	./	./	_/	./	· ·
BH311-0.12-0.3       ✓       ✓         BH311-0.3-0.5       ✓       ✓         BH312-0.11-0.3       ✓       ✓         BH312-1.1-1.3       ✓       ✓         BH312-2.0-2.2       ✓       ✓         BH313-0.3-0.5       ✓       ✓         BH313-0.5-0.7       ✓       ✓         BH313-2.5-2.7       ✓       ✓         BH313-3.6-3.8       ✓       ✓		<b>- '</b>	· ·	· ·	•	•	<b>-</b>	· ·	•	./
BH311-0.3-0.5       J         BH312-0.11-0.3       J         BH312-1.1-1.3       J         BH312-2.0-2.2       J         BH313-0.3-0.5       J         BH313-0.5-0.7       J         BH313-2.5-2.7       J         BH313-3.6-3.8       J		./	./	./				./		V
BH312-0.11-0.3       ✓       ✓         BH312-1.1-1.3       ✓         BH312-2.0-2.2       ✓         BH313-0.3-0.5       ✓       ✓         BH313-0.5-0.7       ✓         BH313-2.5-2.7       ✓         BH313-3.6-3.8       ✓		<u> </u>	· ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				· ·		./
BH312-1.1-1.3       J         BH312-2.0-2.2       J         BH313-0.3-0.5       J         BH313-0.5-0.7       J         BH313-2.5-2.7       J         BH313-3.6-3.8       J		./	./	./				./		V
BH312-2.0-2.2       J         BH313-0.3-0.5       J         BH313-0.5-0.7       J         BH313-2.5-2.7       J         BH313-3.6-3.8       J		V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				<u> </u>	+	,/
BH313-0.3-0.5									+	
BH313-0.5-0.7 BH313-2.5-2.7 BH313-3.6-3.8		./	./	./				./	+	V
BH313-2.5-2.7 BH313-3.6-3.8		V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				V	+	./
BH313-3.6-3.8									+	+
									+	
		/	/	/				/	+	V
BH314-0.8-1.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		+	+					+	+	
		<b>V</b>	<b> </b>	<b>V</b>				<b>√</b>	1	,
									+	+
BH314-2.6-2.8  BH315-0.5-0.95		,	,	,				,	1	





Sample Id	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	Оп НоІд
BH315-1.6-1.8									✓
BH316-0.2-0.5	✓	✓	✓				✓		
BH317-0.18-0.38	✓	✓	✓				✓		
BH317-0.6-0.95									✓
DUPJDC2	✓	<b>√</b>	✓				✓		
DUPHL1									✓
DUPHL2	<b>√</b>	✓	✓				✓		
ТВ	✓								

The  $' \checkmark '$  indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.

SAMPLE AND CHAIN OF CUSTODY FORM EIS FROM: TO: E29923K ENVIRONMENTAL EIS Job ENVIROLAB SERVICES PTY LTD INVESTIGATION 12 ASHLEY STREET Number SERVICES CHATSWOOD NSW 2067 REAR OF 115 WICKS ROAD Date Results STANDARD P: (02) 99106200 MACQUARIE PARK, NSW 2113 Required F: (02) 99106201 P: 02-9888 5000 F: 02-9888 5001 1 of 2 Attention: Jake Cashman Page: Attention: Alleen Sample Preserved in Esky on Ice Wetherill Park Location: Tests Required JDC + HL Sampler: BTEX Coembo Combo Date Lab Sample PID Depth (m) Sampled Ref: Number BH301 0 0.26-0-4 6/04/2017 05-095 15-17 2.32 F.11 5 BH302 0-25-0-45 6 07-0.95 1.7-195 12 Ashley St NOLFE Ph. (02) 9910 6200 X G 4.45 Shelp Fill 3.5-08 9 B4303 0.8-0.95 Shale 10 11 6.11 05 64304 0.15-03 Received by shale D.6-3.K 6 Ice/Icepack 13 F:11 oing BH 305 0.15-0.35 MED Brokenstone 14 Shale 0.5-6.7 15 B#306 6:11 037-03 16 0.8 -1 12 18-2 18 7.0.32 19 36-38 10 BH309 03-0.6 5. Hy llay 21 22 BH309 1.21-0.4 1-12 20 2-22 0.6 sily (ly 0 35-3.7 Sample Containers: Remarks (comments/detection limits required): G - 250mg Glass Jar A - Ziplock Asbestos Bag P - Plastic Bag Received By: Relinquished By: Date Date: Take Curhman 10:45 10 42017

EN 12 CH P:	12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200		SAMPI EIS Job Number; Date Res Required	mber: se Results STANDARD			EROM: ENVIR INVES SERVI REAR MACQ	ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001						
At	tention: Ai	leen			Page:		2 of	2			Attent	ion:	Jake Cr	shman
Lo	eation:	Wether	rill Park				UP VE			S			Esky on Ice	Y
Sa	impler:	JDC+	HL.							-	Ter	sts Requ	ired	
	Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6a	Compo 3	втех				
-	04/2017	26	84310	B-15-0-35	G, A	0.2	Fel	X						
-	1	27	de	0.4-0.6	X, G		S. Maller	-						
r		28	PHBU	0 12.0.3	GA	1	Fill		X					
T		29		0.3-0-5	10		Shale							
T		30		011-03			Fill		X					
		31	1	1.1-1.3		1								
1		32	V	2-22			V							
		33	BH313	0.7-0.5			Lill		X					
T		34		05-07					-					
		35		25-27			W							
		36	V	3-6-35			Shale							
		37	64314	0-2-0-4			£31		X					
		38	1	0.8-1					X					
		39		2-22			V							
		40	1	26-28			Sitylley	_						
L		41	BH315	0.5-0.95			FI		X					
		42	1	16-18			Shale			Ш				
1		43	B4316	0.2-0.5		1	EIL	-	X					
1		44	W.A.	0.18-03			V	-	X			-	-	
1		45		0.6-0.91		V	-	-	-		_			
ŀ	_	No. or	DOCARD	-	G	-	-	-	K		-		+	+
1	-	46	DVFJDc2	-	1		-	-	X			-	-	
1		_	DUPHLI	_	1	-	-	-	-		-	-	-	
1		4-8		-	-	-	-	+	A	7	-	-	-	
The state of the s	Remarks (c	ommen	TB taidetection i	imits require	ed):	-	Sand	G -	250mg		rs: Jar itos Bag			
F	belinquish	ed By:			Date:			Tim			MU	eived By	EZS	Date:



emait sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd. - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

164998-A

Client:

**Environmental Investigation Services** 

PO Box 976 North Ryde BC NSW 1670

Attention: Jake Cashman

Sample log in details:

Your Reference: E29923K, Wetherill Park

No. of samples: Additional Testing on 7 Soils

Date samples received / completed instructions received 10/04/17 / 26/04/17

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 3/05/17 / 2/05/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

#### **Results Approved By:**

General Manager



vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference	UNITS 	164998-A-19 BH306	164998-A-21 BH308	164998-A-29 BH311	164998-A-36 BH313
Depth Date Sampled Type of sample		3.6-3.8 6/04/2017 Soil	1.1-1.3 6/04/2017 Soil	0.3-0.5 6/04/2017 Soil	3.6-3.8 6/04/2017 Soil
Date extracted	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
Date analysed	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	99	92	91

svTRH (C10-C40) in Soil					
Our Reference:	UNITS	164998-A-19	164998-A-21	164998-A-29	164998-A-36
Your Reference		BH306	BH308	BH311	BH313
Depth Date Sampled Type of sample		3.6-3.8 6/04/2017 Soil	1.1-1.3 6/04/2017 Soil	0.3-0.5 6/04/2017 Soil	3.6-3.8 6/04/2017 Soil
Date extracted	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
Date analysed	-	28/04/2017	28/04/2017	28/04/2017	28/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	92	91	91

DAIL : O "	<u> </u>		<u> </u>		
PAHs in Soil Our Reference:	UNITS	164998-A-19	164998-A-21	164998-A-29	164998-A-36
Your Reference		BH306	BH308	BH311	BH313
	-	2000	2000	2	2.10.10
Depth		3.6-3.8	1.1-1.3	0.3-0.5	3.6-3.8
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
Date analysed	-	28/04/2017	28/04/2017	28/04/2017	28/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	99	90	94	94

Acid Extractable metals in soil					
Our Reference:	UNITS	164998-A-19	164998-A-21	164998-A-29	164998-A-36
Your Reference		BH306	BH308	BH311	BH313
	-				
Depth		3.6-3.8	1.1-1.3	0.3-0.5	3.6-3.8
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
Date analysed	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
Arsenic	mg/kg	6	<4	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	8	2	4
Copper	mg/kg	14	35	34	20
Lead	mg/kg	15	14	17	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	2	13	5
Zinc	mg/kg	14	22	14	26

Misc Inorg - Soil		
Our Reference:	UNITS	164998-A-33
Your Reference		BH313
	-	
Depth		0.3-0.5
Date Sampled		6/04/2017
Type of sample		Soil
Date prepared	-	28/04/2017
Date analysed	-	28/04/2017
pH 1:5 soil:water	pH Units	9.9

Clay 50-120g		
Our Reference:	UNITS	164998-A-33
Your Reference		BH313
	-	
Depth		0.3-0.5
Date Sampled		6/04/2017
Type of sample		Soil
Date prepared	-	28/04/2017
Date analysed	-	01/05/2017
Clay in soils <2µm	% (w/w)	8

CEC		
Our Reference:	UNITS	164998-A-33
Your Reference		BH313
	-	
Depth		0.3-0.5
Date Sampled		6/04/2017
Type of sample		Soil
Date prepared	-	28/04/2017
Date analysed	-	28/04/2017
Exchangeable Ca	meq/100g	40
Exchangeable K	meq/100g	0.6
Exchangeable Mg	meq/100g	0.46
Exchangeable Na	meq/100g	0.87
Cation Exchange Capacity	meq/100g	42

Moisture					
Our Reference:	UNITS	164998-A-19	164998-A-21	164998-A-29	164998-A-36
Your Reference		BH306	BH308	BH311	BH313
	-				
Depth		3.6-3.8	1.1-1.3	0.3-0.5	3.6-3.8
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	27/04/2017	27/04/2017	27/04/2017	27/04/2017
Date analysed	-	28/04/2017	28/04/2017	28/04/2017	28/04/2017
Moisture	%	15	18	12	14

Metals in TCLP USEPA1311				
Our Reference:	UNITS	164998-A-1	164998-A-33	164998-A-43
Your Reference		BH301	BH313	BH316
	-			
Depth		0.26-0.4	0.3-0.5	0.2-0.5
Date Sampled		6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	28/04/2017	28/04/2017	28/04/2017
Date analysed	-	[NA]	28/04/2017	28/04/2017
pH of soil for fluid# determ.	pH units	10.5	10.6	9.3
pH of soil TCLP (after HCl)	pH units	2.1	1.9	1.8
Extraction fluid used	-	1	1	1
pH of final Leachate	pH units	5.4	5.4	4.9
Nickel in TCLP	mg/L	[NA]	0.04	0.07

PAHs in TCLP (USEPA 1311)		
Our Reference:	UNITS	164998-A-1
Your Reference		BH301
Depth	-	0.26-0.4
Date Sampled		6/04/2017
Type of sample		Soil
Date extracted	-	28/04/2017
Date analysed	-	28/04/2017
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene-TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total+ve PAH's	mg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	90

Method ID	Methodology Summary				
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.				
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.  Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.				
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.				
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.				
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.				
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.				
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.				
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).				
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.  For soil results:-				
	<ol> <li>'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> </pql></li></ol>				
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>				
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" td="" the="" therefore="" total=""></pql>				
Metals-020	Determination of various metals by ICP-AES.				
Metals-021	Determination of Mercury by Cold Vapour AAS.				
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.				
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.				
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.				
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.				
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.				
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA1311.				

MethodID	Methodology Summary
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Envirolab Reference: 164998-A Page 13 of 19

Revision No: R 00

Client Reference: E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank **Duplicate** Duplicate results Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II % RPD Soil Date extracted 27/04/2 [NT] [NT] LCS-3 27/04/2017 017 Date analysed 27/04/2 [NT] LCS-3 27/04/2017 [NT] 017 Org-016 TRHC6 - C9 mg/kg 25 <25 [NT] [NT] LCS-3 107% TRHC6 - C10 mg/kg Org-016 107% 25 <25 [NT] [NT] LCS-3 Org-016 LCS-3 106% Benzene mg/kg 0.2 <0.2 [NT] [NT] Org-016 Toluene mg/kg 0.5 < 0.5 [NT] [NT] LCS-3 104% Ethylbenzene mg/kg 1 Org-016 <1 [NT] [NT] LCS-3 106% 2 Org-016 LCS-3 109% m+p-xylene mg/kg <2 [NT] [NT] Org-016 o-Xylene mg/kg 1 <1 [NT] [NT] LCS-3 106% naphthalene mg/kg 1 Org-014 [NT] [NT] [NR] [NR] <1 Org-016 % 101 [NT] [NT] LCS-3 99% Surrogate aaa-Trifluorotoluene QUALITYCONTROL UNITS PQL METHOD Blank **Duplicate** Duplicate results Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II % RPD 27/04/2 [NT] [NT] LCS-3 Date extracted 27/04/2017 017 Date analysed 27/04/2 [NT] [NT] LCS-3 28/04/2017 017 Org-003 TRHC₁₀ - C₁₄ mg/kg 50 <50 [NT] [NT] LCS-3 92% TRHC 15 - C28 mg/kg 100 Org-003 <100 [NT] [NT] LCS-3 91% Org-003 LCS-3 76% TRHC29 - C36 mg/kg 100 <100 [NT] [NT] Org-003 TRH>C10-C16 mg/kg 50 <50 [NT] [NT] LCS-3 92% TRH>C16-C34 mg/kg 100 Org-003 <100 [NT] [NT] LCS-3 91% Org-003 <100 LCS-3 76% TRH>C34-C40 mg/kg 100 [NT] [NT] Org-003 Surrogate o-Terphenyl % 85 [NT] [NT] LCS-3 83% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II % RPD 27/04/2 Date extracted [NT] [NT] LCS-3 27/04/2017 017 28/04/2 LCS-3 28/04/2017 Date analysed [NT] [NT] 017 Org-012 Naphthalene 0.1 <0.1 [NT] [NT] LCS-3 94% mg/kg Org-012 [NR] [NR] Acenaphthylene mg/kg 0.1 <0.1 [NT] [NT] Org-012 Acenaphthene mg/kg 0.1 <0.1 [NT] [NT] [NR] [NR] Org-012 Fluorene mg/kg 0.1 <0.1 [NT] [NT] LCS-3 91% Org-012 LCS-3 93% Phenanthrene mg/kg 0.1 <0.1 [NT] [NT] Org-012 Anthracene mg/kg 0.1 <0.1 [NT] [NT] [NR] [NR] Fluoranthene mg/kg 0.1 Org-012 <0.1 [NT] [NT] LCS-3 93% Org-012 LCS-3 Pyrene mg/kg 0.1 <0.1 [NT] [NT] 92% Benzo(a)anthracene mg/kg 0.1 Org-012 <0.1 [NT] [NT] [NR] [NR] Chrysene 0.1 Org-012 <0.1 [NT] [NT] LCS-3 89% mg/kg Org-012 [NR] Benzo(b,j+k) mg/kg 0.2 < 0.2 [NT] [NT] [NR] fluoranthene

Client Reference: E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank **Duplicate** Duplicate results Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II % RPD 0.05 Org-012 < 0.05 [NT] [NT] LCS-3 78% Benzo(a)pyrene mg/kg [NR] Indeno(1,2,3-c,d)pyrene mg/kg 0.1 Org-012 <0.1 [NT] [NT] [NR] Org-012 [NR] Dibenzo(a,h)anthracene mg/kg 0.1 < 0.1 [NT] [NT] [NR] Org-012 Benzo(g,h,i)perylene mg/kg 0.1 <0.1 [NT] [NT] [NR] [NR] Org-012 [NT] LCS-3 113% % 96 [NT] Surrogate p-Terphenyld14 QUALITYCONTROL UNITS PQL Blank METHOD Duplicate Spike Sm# Spike % Duplicate results Sm# Recovery Base II Duplicate II % RPD Acid Extractable metals in soil Date prepared 27/04/2 [NT] [NT] LCS-3 27/04/2017 017 27/04/2 [NT] LCS-3 Date analysed [NT] 27/04/2017 017 Arsenic mg/kg 4 Metals-020 <4 [NT] [NT] LCS-3 117% mg/kg Metals-020 103% Cadmium 0.4 < 0.4 [NT] [NT] LCS-3 Chromium mg/kg 1 Metals-020 <1 [NT] [NT] LCS-3 109% Metals-020 Copper mg/kg 1 <1 [NT] [NT] LCS-3 108% Metals-020 Lead mg/kg 1 <1 [NT] [NT] LCS-3 104% 0.1 Metals-021 LCS-3 102% Mercury mg/kg <0.1 [NT] [NT] Metals-020 LCS-3 Nickel mg/kg 1 <1 [NT] [NT] 102% Metals-020 103% Zinc mg/kg 1 <1 [NT] [NT] LCS-3 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Misc Inorg - Soil Base II Duplicate II % RPD Date prepared 28/04/2 [NT] [NT] LCS-3 28/04/2017 017 28/04/2 [NT] [NT] LCS-3 28/04/2017 Date analysed 017 pH 1:5 soil:water LCS-3 101% pH Units Inorg-001 [NT] [NT] [NT] QUALITYCONTROL UNITS PQL METHOD Blank Clay 50-120g Date prepared [NT] [NT] Date analysed Clay in soils <2µm AS1289.3.6 [NT] % (w/w).3 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery CEC Base II Duplicate II % RPD 28/04/2 LCS-3 Date prepared [NT] [NT] 28/04/2017 017 Date analysed 28/04/2 [NT] [NT] LCS-3 28/04/2017 017 Exchangeable Ca meq/100 0.1 Metals-009 <0.1 [NT] [NT] LCS-3 107% meq/100 Exchangeable K 0.1 Metals-009 <0.1 [NT] [NT] LCS-3 108% g Exchangeable Mg meq/100 0.1 Metals-009 <0.1 [NT] [NT] LCS-3 105%

Envirolab Reference: 164998-A Revision No: R 00

g

Client Reference: E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Base || Duplicate || %RPD CEC Exchangeable Na meq/100 0.1 Metals-009 [NT] [NT] LCS-3 119% < 0.1 QUALITYCONTROL UNITS **PQL** METHOD Blank Metals in TCLP USEPA1311 28/04/2 Date extracted 017 Date analysed 28/04/2 017 Nickel in TCLP 0.02 Metals-020 < 0.02 mg/L **ICP-AES** QUALITYCONTROL UNITS PQL METHOD Blank PAHsinTCLP (USEPA 1311) Date extracted 28/04/2 017 Date analysed 01/05/2 017 Org-012 Naphthalene in TCLP 0.001 < 0.001 mg/L Acenaphthylene in TCLP mg/L 0.001 Org-012 <0.001 Acenaphthene in TCLP 0.001 Org-012 < 0.001 mg/L Org-012 Fluorene in TCLP 0.001 < 0.001 mg/L Phenanthrene in TCLP mg/L 0.001 Org-012 < 0.001 Anthracene in TCLP 0.001 Org-012 < 0.001 mg/L Fluoranthene in TCLP 0.001 Org-012 <0.001 mg/L Pyrene in TCLP mg/L 0.001 Org-012 < 0.001 0.001 Org-012 < 0.001 Benzo(a)anthracene in mg/L **TCLP** Chrysene in TCLP 0.001 Org-012 <0.001 mg/L Benzo(bjk)fluoranthene 0.002 Org-012 < 0.002 mg/L inTCLP 0.001 Org-012 Benzo(a)pyrene in TCLP mg/L < 0.001 Indeno(1,2,3-c,d)pyrene 0.001 Org-012 < 0.001 mg/L -TCLP Dibenzo(a,h)anthracene 0.001 Org-012 < 0.001 mg/L inTCLP Benzo(g,h,i)perylene in 0.001 Org-012 <0.001 mg/L **TCLP** Org-012 Surrogate p-Terphenyl-% 120 QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Metals in TCLP USEPA1311 Base + Duplicate + %RPD

[NT]

[NT]

[NT]

LCS-W1

LCS-W1

LCS-W1

Envirolab Reference: 164998-A Revision No: R 00

mg/L

[NT]

[NT]

[NT]

Date extracted

Date analysed
NickelinTCLP

28/04/2017

28/04/2017

99%

		Client Reference	e: E29923K, Wetheril	ll Park	
QUALITY CONTROL PAHs in TCLP (USEPA 1311)	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-W1	28/04/2017
Date analysed	-	[NT]	[NT]	LCS-W1	01/05/2017
Naphthalene in TCLP	mg/L	[NT]	[NT]	LCS-W1	76%
Acenaphthylene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	[NT]	[NT]	LCS-W1	85%
Phenanthrene in TCLP	mg/L	[NT]	[NT]	LCS-W1	94%
Anthracene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	[NT]	[NT]	LCS-W1	86%
Pyrene in TCLP	mg/L	[NT]	[NT]	LCS-W1	84%
Benzo(a)anthracene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
ChryseneinTCLP	mg/L	[NT]	[NT]	LCS-W1	83%
Benzo(bjk)fluoranthene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	[NT]	[NT]	LCS-W1	85%
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	LCS-W1	92%

### **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 164998-A Revision No: R 00 Page 18 of 19

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 164998-A Page 19 of 19

Revision No: R 00

## Aileen Hie

From:

Joke Cashnian «JCashman@jkgroup.riet.oc»

Sent:

Wednesday, 26 April 2017 3:14 PM

To:

A leen Hie

Subject:

164998 E29923K, Wetherill Park

Alleen,

Can you prouse arrange the following analysis:

PH, CEC and Clay content.

🨘 🔹 БеЗ13 (0.3-0.5ті),

**TCLP** 

BH301 (0.26 Claim for TCLP (PAhs):

ፍት 💮 BH313 (0.3-C.5m) for TCLP (Nickel); and

BR3 (6::0.2-0.5m) for TCLP (Nickel)

The following samples for Compo A:

**ბ⊳ •** RH:13 (პ.5-პ.8იი).

ሚ【 ● - BH31 8 (1.1-1.3m):

**ኅ**ዊ 🔹 ዘቡንተር (በ.2-0.5m), and

BH406 (3.5-4.8 c).

Envirolab Ref. 164998 A De: 3/5/17

Std TIA.

Fraurds,

Jake Cashman Environmental Scientist

1: 4612 9888 5000 F. +612 9888 5001

.... lanangoikgro..... r r t. c.

VAMAS SUBTRICK THE OUT





# ENVIRONMENTAL INVESTIGATION SERVICES

CONSUCTING ENVIRONMENTAL ENGINEERS AND SCHNUSTS

PO Bak 976, North Ayde BC NSW 1670

115 Wicks Rd, Macquarie Park NSW 2113

This email and any attachments are confidence; and may be privileged in which base neither is intended to be well if  $d_{\rm p}$  if you have received this message in error blease notify as and remove if from your system. It is your responsibility to erect any allegationals for viruses and defects before opening or sending Plant (A), At the Company's discretion with may send a paper copy for conditination , in the event of any discrepancy between paper and a economic versions. the paper yers on is to take precedence.



emait sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 164998

Client:

**Environmental Investigation Services** 

PO Box 976 North Ryde BC NSW 1670

Attention: Jake Cashman

Sample log in details:

Your Reference: E29923K, Wetherill Park

No. of samples: 49 Soils

Date samples received / completed instructions received 10/04/17 / 10/04/17

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 19/04/17 / 18/04/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

### **Results Approved By:**

Envirolab Reference: 164998 Revision No: R 00

General Manager



vTRH(C6-C10)/BTEXNin Soil						
Our Reference:	UNITS	164998-1	164998-4	164998-5	164998-9	164998-11
Your Reference		BH301	BH301	BH302	BH303	BH304
5 4	-	0.00.04	0000	0.05.0.45	0.5.0.0	0.45.0.0
Depth Depth		0.26-0.4	3.0-3.2	0.25-0.45	0.5-0.8	0.15-0.3
Date Sampled		6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil
Type of sample		5011	5011	5011	5011	5011
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	100	97	102	98	102

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	164998-13 BH305	164998-15 BH306	164998-18 BH306	164998-20 BH308	164998-22 BH309
Depth Date Sampled Type of sample		0.15-0.35 6/04/2017 Soil	0.13-0.3 6/04/2017 Soil	3.0-3.2 6/04/2017 Soil	0.3-0.6 6/04/2017 Soil	0.21-0.4 6/04/2017 Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	98	111	101	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	164998-24	164998-26	164998-28	164998-30	164998-33
Your Reference		BH309	BH310	BH311	BH312	BH313
	-					
Depth		2.0-2.2	0.15-0.35	0.12-0.3	0.11-0.3	0.3-0.5
Date Sampled		6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil
Type of sample		5011	5011	5011	5011	5011
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	137	108	105	111

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	164998-37	164998-38	164998-41	164998-43	164998-44
Your Reference		BH314	BH314	BH315	BH316	BH317
	-					
Depth		0.2-0.4	0.8-1.0	0.5-0.95	0.2-0.5	0.18-0.38
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	113	111	108	101	111

	1			
vTRH(C6-C10)/BTEXN in Soil				
Our Reference:	UNITS	164998-46	164998-48	164998-49
Your Reference		DUPJDC2	DUPHL2	TB
	-			
Depth		-	-	-
Date Sampled		6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017
TRHC6 - C9	mg/kg	<25	<25	[NA]
TRHC6 - C10	mg/kg	<25	<25	[NA]
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	[NA]
naphthalene	mg/kg	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	107	112	114

TD11/040 040): 0 "						
svTRH (C10-C40) in Soil		4040004	4040004	404000 =	404000	404000 44
Our Reference:	UNITS	164998-1	164998-4	164998-5	164998-9	164998-11
Your Reference		BH301	BH301	BH302	BH303	BH304
	-					
Depth		0.26-0.4	3.0-3.2	0.25-0.45	0.5-0.8	0.15-0.3
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	280	<100	<100	<100	<100
TRHC29 - C36	mg/kg	730	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	700	<100	<100	<100	<100
TRH>C34-C40	mg/kg	920	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	1,600	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	70	72	70	74

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	164998-13	164998-15	164998-18	164998-20	164998-22
Your Reference		BH305	BH306	BH306	BH308	BH309
	-					
Depth		0.15-0.35	0.13-0.3	3.0-3.2	0.3-0.6	0.21-0.4
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	72	82	71	81	85

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	164998-24	164998-26	164998-28	164998-30	164998-33
Your Reference		BH309	BH310	BH311	BH312	BH313
Depth Date Sampled Type of sample	-	2.0-2.2 6/04/2017 Soil	0.15-0.35 6/04/2017 Soil	0.12-0.3 6/04/2017 Soil	0.11-0.3 6/04/2017 Soil	0.3-0.5 6/04/2017 Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	12/04/2017	12/04/2017	12/04/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	120
TRHC29 - C36	mg/kg	<100	<100	<100	<100	320
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	300
TRH>C34-C40	mg/kg	<100	<100	<100	<100	430
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	730
Surrogate o-Terphenyl	%	86	85	71	72	73

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	164998-37	164998-38	164998-41	164998-43	164998-44
Your Reference		BH314	BH314	BH315	BH316	BH317
	-					
Depth		0.2-0.4	0.8-1.0	0.5-0.95	0.2-0.5	0.18-0.38
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	85	70	74	75	76

	1		
svTRH (C10-C40) in Soil			
Our Reference:	UNITS	164998-46	164998-48
Your Reference		DUPJDC2	DUPHL2
	-		
Depth		-	-
Date Sampled		6/04/2017	6/04/2017
Type of sample		Soil	Soil
Date extracted	-	11/04/2017	11/04/2017
Date analysed	-	12/04/2017	12/04/2017
TRHC10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC29 - C36	mg/kg	<100	<100
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	<100
TRH>C34-C40	mg/kg	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	75	76

PAHs in Soil						
Our Reference:	UNITS	164998-1	164998-4	164998-5	164998-9	164998-11
Your Reference		BH301	BH301	BH302	BH303	BH304
	-					
Depth		0.26-0.4	3.0-3.2	0.25-0.45	0.5-0.8	0.15-0.3
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.0	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	2.5	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	2.7	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	1.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.9	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.88	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.8	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	12	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	83	89	84	87	86

PAHs in Soil						
Our Reference:	UNITS	164998-13	164998-15	164998-18	164998-20	164998-22
Your Reference		BH305	BH306	BH306	BH308	BH309
	-					
Depth		0.15-0.35	0.13-0.3	3.0-3.2	0.3-0.6	0.21-0.4
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	81	95	94	81	87

PAHs in Soil						
Our Reference:	UNITS	164998-24	164998-26	164998-28	164998-30	164998-33
Your Reference		BH309	BH310	BH311	BH312	BH313
Depth Date Sampled		2.0-2.2 6/04/2017	0.15-0.35 6/04/2017	0.12-0.3 6/04/2017	0.11-0.3 6/04/2017	0.3-0.5 6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.2
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.5
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	4.8
Surrogate p-Terphenyl-d14	%	82	80	86	79	96

PAHs in Soil						
Our Reference:	UNITS	164998-37	164998-38	164998-41	164998-43	164998-44
Your Reference		BH314	BH314	BH315	BH316	BH317
	-					
Depth		0.2-0.4	0.8-1.0	0.5-0.95	0.2-0.5	0.18-0.38
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	95	83	106	90	97

PAHs in Soil			
Our Reference:	UNITS	164998-46	164998-48
Your Reference		DUPJDC2	DUPHL2
	-		
Depth		-	-
Date Sampled		6/04/2017	6/04/2017
Type of sample		Soil	Soil
Date extracted	-	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	93	84

Organochlorine Pesticides in soil						
Our Reference:	UNITS	164998-1	164998-5	164998-9	164998-11	164998-13
Your Reference		BH301	BH302	BH303	BH304	BH305
Depth	-	0.26-0.4	0.25-0.45	0.5-0.8	0.15-0.3	0.15-0.35
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	91	83	84	85

Organochlorine Pesticides in soil						
Our Reference:	UNITS	164998-15	164998-20	164998-22	164998-24	164998-26
Your Reference		BH306	BH308	BH309	BH309	BH310
Depth	-	0.13-0.3	0.3-0.6	0.21-0.4	2.0-2.2	0.15-0.35
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	89	82	89	92

Organophosphorus Pesticides						
Our Reference:	UNITS	164998-1	164998-5	164998-9	164998-11	164998-13
Your Reference		BH301	BH302	BH303	BH304	BH305
Depth Date Sampled Type of sample		0.26-0.4 6/04/2017 Soil	0.25-0.45 6/04/2017 Soil	0.5-0.8 6/04/2017 Soil	0.15-0.3 6/04/2017 Soil	0.15-0.35 6/04/2017 Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	91	83	84	85

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	164998-15 BH306	164998-20 BH308	164998-22 BH309	164998-24 BH309	164998-26 BH310
Depth Date Sampled Type of sample		0.13-0.3 6/04/2017 Soil	0.3-0.6 6/04/2017 Soil	0.21-0.4 6/04/2017 Soil	2.0-2.2 6/04/2017 Soil	0.15-0.35 6/04/2017 Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	89	82	89	92

PCBs in Soil						
Our Reference:	UNITS	164998-1	164998-5	164998-9	164998-11	164998-13
Your Reference		BH301	BH302	BH303	BH304	BH305
Depth Date Sampled Type of sample		0.26-0.4 6/04/2017 Soil	0.25-0.45 6/04/2017 Soil	0.5-0.8 6/04/2017 Soil	0.15-0.3 6/04/2017 Soil	0.15-0.35 6/04/2017 Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	76	91	83	84	85

PCBs in Soil						
Our Reference:	UNITS	164998-15	164998-20	164998-22	164998-24	164998-26
Your Reference		BH306	BH308	BH309	BH309	BH310
Donth	-	0.13-0.3	0.3-0.6	0.21-0.4	2.0-2.2	0.15-0.35
Depth Date Complete						
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	87	89	82	89	92

Acid Extractable metals in soil						
Our Reference:	UNITS	164998-1	164998-4	164998-5	164998-9	164998-11
Your Reference		BH301	BH301	BH302	BH303	BH304
	-					
Depth		0.26-0.4	3.0-3.2	0.25-0.45	0.5-0.8	0.15-0.3
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Arsenic	mg/kg	<4	16	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	27	26	16	9	11
Copper	mg/kg	74	15	39	11	50
Lead	mg/kg	10	22	19	10	17
Mercury	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Nickel	mg/kg	24	14	17	10	17
Zinc	mg/kg	39	28	83	34	110

Acid Extractable metals in soil						
Our Reference:	UNITS	164998-13	164998-15	164998-18	164998-20	164998-22
Your Reference		BH305	BH306	BH306	BH308	BH309
Depth Date Sampled Type of sample	-	0.15-0.35 6/04/2017 Soil	0.13-0.3 6/04/2017 Soil	3.0-3.2 6/04/2017 Soil	0.3-0.6 6/04/2017 Soil	0.21-0.4 6/04/2017 Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Arsenic	mg/kg	<4	4	6	5	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	12	27	15	11
Copper	mg/kg	41	36	18	42	39
Lead	mg/kg	17	17	23	19	20
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	23	15	15	18	13
Zinc	mg/kg	79	68	47	93	75

Acid Extractable metals in soil						
Our Reference:	UNITS	164998-24	164998-26	164998-28	164998-30	164998-33
Your Reference		BH309	BH310	BH311	BH312	BH313
	-					
Depth		2.0-2.2	0.15-0.35	0.12-0.3	0.11-0.3	0.3-0.5
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Arsenic	mg/kg	6	6	6	7	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	23	10	2	14	17
Copper	mg/kg	40	47	15	42	54
Lead	mg/kg	22	19	6	19	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	12	14	17	70
Zinc	mg/kg	61	65	38	96	130

Acid Extractable metals in soil						
Our Reference:	UNITS	164998-37	164998-38	164998-41	164998-43	164998-44
Your Reference		BH314	BH314	BH315	BH316	BH317
	-					
Depth		0.2-0.4	0.8-1.0	0.5-0.95	0.2-0.5	0.18-0.38
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Arsenic	mg/kg	6	5	6	<4	12
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	19	11	11	4
Copper	mg/kg	41	31	32	78	39
Lead	mg/kg	19	21	16	12	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	20	10	9	47	22
Zinc	mg/kg	120	47	53	58	65

	1			I
Acid Extractable metals in soil				
Our Reference:	UNITS	164998-46	164998-48	164998-50
Your Reference		DUPJDC2	DUPHL2	BH316-
	-			[TRIPLICATE]
Depth		-	-	0.2-0.5
Date Sampled		6/04/2017	6/04/2017	06/04/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	11/04/2017	11/04/2017	11/04/2017
Arsenic	mg/kg	7	6	6
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	12	12	11
Copper	mg/kg	43	40	51
Lead	mg/kg	20	20	14
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	18	14	39
Zinc	mg/kg	81	77	67

			•			
Moisture						
Our Reference:	UNITS	164998-1	164998-4	164998-5	164998-9	164998-11
Your Reference		BH301	BH301	BH302	BH303	BH304
	-					
Depth		0.26-0.4	3.0-3.2	0.25-0.45	0.5-0.8	0.15-0.3
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	_	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
Moisture	%	15	19	23	18	21
	, ,					
Moisture						
Our Reference:	UNITS	164998-13	164998-15	164998-18	164998-20	164998-22
Your Reference		BH305	BH306	BH306	BH308	BH309
	-					
Depth		0.15-0.35	0.13-0.3	3.0-3.2	0.3-0.6	0.21-0.4
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
Moisture	%	23	17	22	20	19
				l.		I.
Moisture						
Our Reference:	UNITS	164998-24	164998-26	164998-28	164998-30	164998-33
Your Reference		BH309	BH310	BH311	BH312	BH313
	-					
Depth		2.0-2.2	0.15-0.35	0.12-0.3	0.11-0.3	0.3-0.5
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
Moisture	%	21	23	22	22	14
Moisture						
Our Reference:	UNITS	164998-37	164998-38	164998-41	164998-43	164998-44
Your Reference		BH314	BH314	BH315	BH316	BH317
5 4	-		0.04.5	0.7.0.5	0.00-	0.40.0.55
Depth		0.2-0.4	0.8-1.0	0.5-0.95	0.2-0.5	0.18-0.38
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/04/2017	11/04/2017	11/04/2017	11/04/2017	11/04/2017
Date analysed	-	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017

Moisture			
Our Reference:	UNITS	164998-46	164998-48
Your Reference		DUPJDC2	DUPHL2
	-		
Depth		-	-
Date Sampled		6/04/2017	6/04/2017
Type of sample		Soil	Soil
Date prepared	-	11/04/2017	11/04/2017
Date analysed	-	12/04/2017	12/04/2017
Moisture	%	21	18

			•			
Asbestos ID - soils						
Our Reference:	UNITS	164998-1	164998-5	164998-9	164998-11	164998-13
Your Reference		BH301	BH302	BH303	BH304	BH305
	-					
Depth		0.26-0.4	0.25-0.45	0.5-0.8	0.15-0.3	0.15-0.35
Date Sampled Type of sample		6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil	6/04/2017 Soil
Date analysed	-	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
Sample mass tested	g	Approx. 20g	Approx. 20g	Approx. 5g	Approx. 20g	Approx. 15g
Sample Description	-	Brown coarse-grained	Brown clayey soil	Brown clayey soil	Brown clayey soil	Brown clayey soil
		soil & rocks	<b>55</b>	<b>56</b>	<b>55</b>	<b>5</b> 5
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at	detected at	detected at
		reporting limit of	reporting limit of	reporting limit of	reporting limit of	reporting limit of
		0.1g/kg Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected	detected	detected	detected	detected
	Ι			I		
Asbestos ID - soils						
Our Reference:	UNITS	164998-15	164998-20	164998-22	164998-24	164998-26
Your Reference		BH306	BH308	BH309	BH309	BH310
Depth		0.13-0.3	0.3-0.6	0.21-0.4	2.0-2.2	0.15-0.35
Date Sampled		6/04/2017	6/04/2017	6/04/2017	6/04/2017	6/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/04/2017	12/04/2017	12/04/2017	12/04/2017	12/04/2017
Sample mass tested	g	Approx. 15g	Approx. 25g	Approx. 35g	Approx. 40g	Approx. 35g
Sample Description	-	Brown clayey	Brown clayey	Brown clayey	Brown clayey	Brown clayey
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at	detected at	detected at
		reporting limit of 0.1g/kg	reporting limit of 0.1g/kg	reporting limit of 0.1g/kg	reporting limit of	reporting limit of
		Organic fibres	Organic fibres	Organic fibres	0.1g/kg Organic fibres	0.1g/kg Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected	detected	detected	detected	detected

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-  1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

E29923K, Wetherill Park **Client Reference:** QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II % RPD Soil 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 Date extracted 017 Date analysed 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 TRHC6 - C9 mg/kg 25 Org-016 <25 164998-1 <25||<25 LCS-1 94% 25 Org-016 <25 164998-1 <25||<25 LCS-1 94% TRHC6 - C10 mg/kg 164998-1 LCS-1 Benzene 0.2 Org-016 < 0.2 <0.2||<0.2 83% mg/kg Toluene mg/kg 0.5 Org-016 < 0.5 164998-1 <0.5||<0.5 LCS-1 92% Ethylbenzene 1 Org-016 <1 164998-1 <1||<1 LCS-1 97% mg/kg 2 LCS-1 Org-016 <2 164998-1 <2||<2 98% m+p-xylene mg/kg o-Xylene 1 Org-016 <1 164998-1 <1||<1 LCS-1 99% mg/kg naphthalene 1 Org-014 164998-1 <1||<1 [NR] [NR] mg/kg <1 % Org-016 116 164998-1 100 | 98 | RPD: 2 LCS-1 100% Surrogate aaa-Trifluorotoluene QUALITYCONTROL UNITS PQL Blank METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II % RPD 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 Date extracted 11/04/2017 017 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 Date analysed 017 TRHC₁₀ - C₁₄ mg/kg 50 Org-003 <50 164998-1 <50||<50 LCS-1 133% TRHC₁₅ - C₂₈ mg/kg 100 Org-003 <100 164998-1 280 | 280 | RPD: 0 LCS-1 125% LCS-1 TRHC29 - C36 mg/kg 100 Org-003 <100 164998-1 730 | 840 | RPD: 14 121% TRH>C10-C16 mg/kg 50 Org-003 <50 164998-1 <50||<50 LCS-1 133% TRH>C16-C34 mg/kg 100 Org-003 <100 164998-1 700 | 770 | RPD: 10 LCS-1 125% 164998-1 920 | 1100 | RPD: 18 LCS-1 TRH>C34-C40 mg/kg 100 Org-003 <100 121% Surrogate o-Terphenyl % Org-003 89 164998-1 83 | 79 | RPD: 5 LCS-1 120% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II % RPD Date extracted 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 11/04/2 11/04/2017 || 11/04/2017 Date analysed 164998-1 LCS-1 11/04/2017 017 Naphthalene 0.1 Org-012 <0.1 164998-1 <0.1 || <0.1 LCS-1 92% mg/kg [NR] Acenaphthylene 0.1 Org-012 <0.1 164998-1 <0.1 || 0.2 [NR] mg/kg Acenaphthene 0.1 Org-012 <0.1 164998-1 <0.1||<0.1 [NR] [NR] mg/kg Fluorene 0.1 Org-012 <0.1 164998-1 <0.1 || <0.1 LCS-1 97% mg/kg LCS-1 Phenanthrene 0.1 Org-012 <0.1 164998-1 1.0 || 1.2 || RPD: 18 108% mg/kg Anthracene 0.1 Org-012 <0.1 164998-1 0.3 | 0.2 | RPD: 40 [NR] [NR] mg/kg Fluoranthene 0.1 Org-012 <0.1 164998-1 2.5 || 2.3 || RPD: 8 LCS-1 96% mg/kg LCS-1 Pyrene 0.1 Org-012 <0.1 164998-1 2.7 || 2.5 || RPD: 8 93% mg/kg Benzo(a)anthracene 0.1 Org-012 <0.1 164998-1 1.1 || 1 || RPD: 10 [NR] [NR] mg/kg Chrysene 0.1 Org-012 164998-1 0.9 || 0.9 || RPD: 0 LCS-1 87% mg/kg < 0.1 Benzo(b,j 0.2 Org-012 <0.2 164998-1 1||1||RPD:0 [NR] [NR] mg/kg +k)fluoranthene

**Client Reference:** E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD 0.05 Org-012 < 0.05 164998-1 0.88 || 0.78 || RPD: 12 LCS-1 73% Benzo(a)pyrene mg/kg 164998-1 [NR] Indeno(1,2,3-c,d)pyrene mg/kg 0.1 Org-012 <0.1 0.6 | | 0.6 | | RPD: 0 [NR] 0.1 Org-012 164998-1 Dibenzo(a,h)anthracene mg/kg <0.1 <0.1||<0.1 [NR] [NR] Org-012 164998-1 Benzo(g,h,i)perylene mg/kg 0.1 <0.1 0.8 | 0.9 | RPD: 12 [NR] [NR] Org-012 99 164998-1 83 | 87 || RPD: 5 LCS-1 125% % Surrogate p-Terphenyld14 QUALITYCONTROL UNITS PQL Blank METHOD Duplicate Spike Sm# Spike % **Duplicate results** Sm# Recovery Organochlorine Base II Duplicate II %RPD Pesticides in soil Date extracted 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 11/04/2 164998-1 LCS-1 11/04/2017 Date analysed 11/04/2017 || 11/04/2017 017 **HCB** Org-005 [NR] mg/kg 0.1 <0.1 164998-1 <0.1||<0.1 [NR] alpha-BHC Org-005 164998-1 LCS-1 119% mg/kg 0.1 <0.1 <0.1 || <0.1 gamma-BHC mg/kg 0.1 Org-005 <0.1 164998-1 <0.1 || <0.1 [NR] [NR] Org-005 108% beta-BHC mg/kg 0.1 <0.1 164998-1 <0.1||<0.1 LCS-1 LCS-1 114% Heptachlor mg/kg 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 delta-BHC 0.1 Org-005 <0.1 164998-1 [NR] [NR] mg/kg <0.1 || <0.1 Org-005 Aldrin mg/kg 0.1 <0.1 164998-1 <0.1||<0.1 LCS-1 111% Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 LCS-1 109% gamma-Chlordane 0.1 Org-005 <0.1 164998-1 [NR] [NR] mg/kg <0.1 || <0.1 Org-005 alpha-chlordane mg/kg 0.1 <0.1 164998-1 <0.1||<0.1 [NR] [NR] Endosulfan I mg/kg 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 [NR] [NR] Org-005 164998-1 LCS-1 109% pp-DDE mg/kg 0.1 <0.1 <0.1||<0.1 Dieldrin mg/kg 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 LCS-1 126% Endrin 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 LCS-1 113% mg/kg LCS-1 pp-DDD mg/kg 0.1 Org-005 <0.1 164998-1 <0.1 || <0.1 111% Endosulfan II mg/kg 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 [NR] [NR] pp-DDT 0.1 Org-005 <0.1 164998-1 <0.1||<0.1 [NR] [NR] mg/kg

<0.1||<0.1

<0.1 || <0.1

<0.1||<0.1

76 | | 78 | | RPD: 3

[NR]

LCS-1

[NR]

LCS-1

[NR]

109%

[NR]

121%

Envirolab Reference: 164998 Revision No: R 00

mg/kg

mg/kg

mg/kg

%

0.1

0.1

0.1

Org-005

Org-005

Org-005

Org-005

<0.1

<0.1

<0.1

99

164998-1

164998-1

164998-1

164998-1

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

**Client Reference:** E29923K, Wetherill Park PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organophosphorus Base II Duplicate II % RPD **Pesticides** Date extracted 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 Date analysed 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 Azinphos-methyl mg/kg 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 [NR] [NR] (Guthion) Org-008 Bromophos-ethyl mg/kg 0.1 <0.1 164998-1 <0.1||<0.1 [NR] [NR] Org-008 164998-1 LCS-1 95% Chlorpyriphos mg/kg 0.1 <0.1 <0.1||<0.1 Chlorpyriphos-methyl mg/kg 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 [NR] [NR] Diazinon 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 [NR] [NR] mg/kg Dichlorvos 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 LCS-1 94% mg/kg Dimethoate mg/kg 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 [NR] [NR] **Ethion** 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 LCS-1 102% mg/kg LCS-1 Fenitrothion 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 98% mg/kg Malathion 0.1 Org-008 <0.1 164998-1 <0.1||<0.1 LCS-1 86% mg/kg Parathion 0.1 Org-008 164998-1 LCS-1 102% mg/kg <0.1 <0.1||<0.1 LCS-1 Ronnel 0.1 Org-008 <0.1 164998-1 89% mg/kg <0.1 || <0.1 % Org-008 164998-1 76 | | 78 | | RPD: 3 LCS-1 92% Surrogate TCMX QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PCBs in Soil Base II Duplicate II % RPD Date extracted 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 11/04/2 Date analysed 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 Aroclor 1016 mg/kg 0.1 Org-006 <0.1 164998-1 <0.1||<0.1 [NR] [NR] Aroclor 1221 mg/kg 0.1 Org-006 <0.1 164998-1 <0.1 || <0.1 [NR] [NR] Aroclor 1232 mg/kg 0.1 Org-006 <0.1 164998-1 <0.1||<0.1 [NR] [NR] Aroclor 1242 0.1 Org-006 <0.1 164998-1 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1248 mg/kg 0.1 Org-006 <0.1 164998-1 <0.1 || <0.1 [NR] [NR] Aroclor 1254 mg/kg 0.1 Org-006 <0.1 164998-1 <0.1||<0.1 LCS-1 102% Aroclor 1260 0.1 Org-006 <0.1 164998-1 <0.1||<0.1 [NR] [NR] mg/kg % Org-006 164998-1 LCS-1 92% Surrogate TCLMX 99 76||78||RPD:3

**Client Reference:** E29923K, Wetherill Park QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II % RPD in soil 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 Date prepared 017 Date analysed 11/04/2 164998-1 11/04/2017 || 11/04/2017 LCS-1 11/04/2017 017 Arsenic mg/kg 4 Metals-020 <4 164998-1 <4||<4 LCS-1 111% Cadmium mg/kg 0.4 Metals-020 < 0.4 164998-1 <0.4||<0.4 LCS-1 101% Metals-020 164998-1 27 || 24 || RPD: 12 LCS-1 106% Chromium mg/kg 1 <1 Copper mg/kg 1 Metals-020 <1 164998-1 74||74||RPD:0 LCS-1 107% Lead 1 Metals-020 164998-1 10 | 11 | RPD: 10 LCS-1 103% mg/kg <1 164998-1 LCS-1 Mercury 0.1 Metals-021 <0.1 <0.1||<0.1 94% mg/kg Nickel 1 Metals-020 <1 164998-1 24 | 21 | RPD: 13 LCS-1 99% mg/kg Zinc mg/kg 1 Metals-020 <1 164998-1 39||40||RPD:3 LCS-1 101% QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD Soil LCS-2 Date extracted 164998-22 11/04/2017 || 11/04/2017 11/04/2017 Date analysed 164998-22 11/04/2017 || 11/04/2017 LCS-2 11/04/2017 164998-22 <25||<25 LCS-2 107% TRHC6 - C9 mg/kg 164998-22 <25||<25 LCS-2 107% TRHC6 - C₁₀ mg/kg LCS-2 Benzene 164998-22 <0.2||<0.2 98% mg/kg Toluene 164998-22 <0.5||<0.5 LCS-2 109% mg/kg Ethylbenzene mg/kg 164998-22 <1||<1 LCS-2 109% 164998-22 <2||<2 LCS-2 110% m+p-xylene mg/kg o-Xylene mg/kg 164998-22 <1||<1 LCS-2 111% naphthalene mg/kg 164998-22 <1||<1 [NR] [NR] 164998-22 96 | 104 | RPD: 8 LCS-2 114% Surrogate aaa-% Trifluorotoluene QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery svTRH (C10-C40) in Soil Base + Duplicate + %RPD Date extracted 164998-22 11/04/2017 || 11/04/2017 LCS-2 11/04/2017 Date analysed 164998-22 11/04/2017 || 11/04/2017 LCS-2 11/04/2017 164998-22 <50||<50 LCS-2 115% TRHC₁₀ - C₁₄ mg/kg 164998-22 <100 || <100 LCS-2 112% TRHC 15 - C28 mg/kg 164998-22 <100 || <100 LCS-2 TRHC29 - C36 mg/kg 121% 164998-22 <50 || <50 LCS-2 115% TRH>C10-C16 mg/kg TRH>C16-C34 mg/kg 164998-22 <100 || <100 LCS-2 112% TRH>C34-C40 mg/kg 164998-22 <100 || <100 LCS-2 121%

85 | 84 | RPD: 1

Envirolab Reference: 164998 Revision No: R 00

Surrogate o-Terphenyl

%

164998-22

107%

LCS-2

**Client Reference:** E29923K, Wetherill Park QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery PAHs in Soil Base + Duplicate + %RPD 11/04/2017 || 11/04/2017 LCS-2 Date extracted 164998-22 11/04/2017 Date analysed 164998-22 11/04/2017 || 11/04/2017 LCS-2 11/04/2017 Naphthalene 164998-22 <0.1||<0.1 LCS-2 100% mg/kg Acenaphthylene mg/kg 164998-22 <0.1||<0.1 [NR] [NR] Acenaphthene mg/kg 164998-22 <0.1||<0.1 [NR] [NR] Fluorene 164998-22 <0.1||<0.1 LCS-2 101% mg/kg Phenanthrene 164998-22 <0.1||<0.1 LCS-2 mg/kg 113% Anthracene mg/kg 164998-22 <0.1||<0.1 [NR] [NR] Fluoranthene 164998-22 <0.1||<0.1 LCS-2 96% mg/kg 164998-22 LCS-2 93% Pyrene mg/kg <0.1||<0.1 Benzo(a)anthracene 164998-22 <0.1||<0.1 [NR] [NR] mg/kg Chrysene mg/kg 164998-22 <0.1||<0.1 LCS-2 92% 164998-22 Benzo(b,j+k)fluoranthene mg/kg <0.2 | | <0.2 [NR] [NR] Benzo(a)pyrene LCS-2 164998-22 <0.05 || <0.05 75% mg/kg Indeno(1,2,3-c,d)pyrene mg/kg 164998-22 <0.1||<0.1 [NR] [NR] 164998-22 [NR] [NR] Dibenzo(a,h)anthracene <0.1||<0.1 mg/kg mg/kg Benzo(g,h,i)perylene 164998-22 <0.1||<0.1 [NR] [NR] % 164998-22 87 | 79 | RPD: 10 LCS-2 124% Surrogate p-Terphenyl-d14 QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Organochlorine Pesticides Base + Duplicate + %RPD in soil Date extracted 164998-22 11/04/2017 || 11/04/2017 Date analysed 164998-22 11/04/2017 || 11/04/2017 **HCB** mg/kg 164998-22 <0.1||<0.1 alpha-BHC 164998-22 <0.1||<0.1 mg/kg gamma-BHC mg/kg 164998-22 <0.1||<0.1 beta-BHC 164998-22 <0.1||<0.1 mg/kg Heptachlor 164998-22 <0.1||<0.1 mg/kg delta-BHC mg/kg 164998-22 <0.1||<0.1 Aldrin 164998-22 <0.1||<0.1 mg/kg Heptachlor Epoxide mg/kg 164998-22 <0.1||<0.1 gamma-Chlordane mg/kg 164998-22 <0.1||<0.1 alpha-chlordane mg/kg 164998-22 <0.1||<0.1 Endosulfan I 164998-22 <0.1||<0.1 mg/kg pp-DDE 164998-22 <0.1||<0.1 mg/kg Dieldrin mg/kg 164998-22 <0.1||<0.1 Endrin mg/kg 164998-22 <0.1||<0.1 pp-DDD 164998-22 mg/kg <0.1||<0.1 Endosulfan II mg/kg 164998-22 <0.1||<0.1 pp-DDT mg/kg 164998-22 <0.1||<0.1 Endrin Aldehyde mg/kg 164998-22 <0.1||<0.1

Envirolab Reference: 164998 Revision No: R 00

mg/kg

164998-22

<0.1||<0.1

Endosulfan Sulphate

		Client Reference	E29923K, Wetheril
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate
Organochlorine Pesticides in soil			Base + Duplicate + %RPD
Methoxychlor	mg/kg	164998-22	<0.1  <0.1
Surrogate TCMX	%	164998-22	82  83  RPD:1
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate
Organophosphorus Pesticides			Base + Duplicate + %RPD
Date extracted	-	164998-22	11/04/2017    11/04/2017
Date analysed	-	164998-22	11/04/2017    11/04/2017
Azinphos-methyl (Guthion)	mg/kg	164998-22	<0.1  <0.1
Bromophos-ethyl	mg/kg	164998-22	<0.1  <0.1
Chlorpyriphos	mg/kg	164998-22	<0.1  <0.1
Chlorpyriphos-methyl	mg/kg	164998-22	<0.1  <0.1
Diazinon	mg/kg	164998-22	<0.1  <0.1
Dichlorvos	mg/kg	164998-22	<0.1  <0.1
Dimethoate	mg/kg	164998-22	<0.1  <0.1
Ethion	mg/kg	164998-22	<0.1  <0.1
Fenitrothion	mg/kg	164998-22	<0.1  <0.1
Malathion	mg/kg	164998-22	<0.1  <0.1
Parathion	mg/kg	164998-22	<0.1  <0.1
Ronnel	mg/kg	164998-22	<0.1  <0.1
Surrogate TCMX	%	164998-22	82  83  RPD:1
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate
PCBs in Soil			Base + Duplicate + %RPD
Date extracted	-	164998-22	11/04/2017  11/04/2017
Date analysed	-	164998-22	11/04/2017    11/04/2017
Aroclor 1016	mg/kg	164998-22	<0.1  <0.1
Aroclor 1221	mg/kg	164998-22	<0.1  <0.1
Aroclor 1232	mg/kg	164998-22	<0.1    <0.1
Aroclor 1242	mg/kg	164998-22	<0.1  <0.1
Aroclor 1248	mg/kg	164998-22	<0.1  <0.1
Aroclor 1254	mg/kg	164998-22	<0.1  <0.1
Aroclor 1260	mg/kg	164998-22	<0.1  <0.1
Surrogate TCLMX	%	164998-22	82    83    RPD: 1

**Client Reference:** E29923K, Wetherill Park QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Acid Extractable metals in Base + Duplicate + %RPD 11/04/2017 || 11/04/2017 LCS-2 11/04/2017 Date prepared 164998-22 Date analysed 164998-22 11/04/2017 || 11/04/2017 LCS-2 11/04/2017 Arsenic 164998-22 6||5||RPD:18 LCS-2 112% mg/kg LCS-2 Cadmium mg/kg 164998-22 <0.4||<0.4 103% Chromium mg/kg 164998-22 11 || 11 || RPD: 0 LCS-2 108% 39||37||RPD:5 Copper 164998-22 LCS-2 110% mg/kg Lead 164998-22 20 | 18 | RPD: 11 LCS-2 103% mg/kg Mercury 164998-22 <0.1||<0.1 LCS-2 96% mg/kg Nickel 164998-22 13||12||RPD:8 LCS-2 101% mg/kg Zinc 164998-22 75||71||RPD:5 LCS-2 mg/kg 102% QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD Soil Date extracted 164998-43 11/04/2017 || 11/04/2017 164998-5 11/04/2017 Date analysed 164998-43 11/04/2017 || 11/04/2017 164998-5 11/04/2017 TRHC6 - C9 mg/kg 164998-43 <25||<25 164998-5 103% 164998-43 <25||<25 164998-5 103% TRHC6 - C10 mg/kg 164998-5 164998-43 92% Benzene mg/kg <0.2||<0.2 Toluene 164998-43 <0.5||<0.5 164998-5 103% mg/kg Ethylbenzene 164998-43 <1||<1 164998-5 105% mg/kg m+p-xylene mg/kg 164998-43 <2||<2 164998-5 107% o-Xylene 164998-43 <1||<1 164998-5 107% mg/kg naphthalene mg/kg 164998-43 <1||<1 [NR] [NR] Surrogate aaa-% 164998-43 101 || 107 || RPD: 6 164998-5 111% Trifluorotoluene QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike % Recovery Spike Sm# svTRH (C10-C40) in Soil Base + Duplicate + %RPD 11/04/2017 || 11/04/2017 Date extracted 164998-43 164998-5 11/04/2017 Date analysed 164998-43 12/04/2017 | 12/04/2017 164998-5 11/04/2017

<50||<50

<100 || <100

<100||<100

<50||<50

<100||<100

<100 || <100

75||75||RPD:0

164998-5

164998-5

164998-5

164998-5

164998-5

164998-5

164998-5

110%

101%

109%

110%

101%

109%

72%

164998-43

164998-43

164998-43

164998-43

164998-43

164998-43

164998-43

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

Envirolab Reference: 164998 Revision No: R 00

TRHC₁₀ - C₁₄

TRHC₁₅ - C₂₈

TRHC29 - C36

TRH>C10-C16

TRH>C16-C34

TRH>C34-C40

Surrogate o-Terphenyl

**Client Reference:** E29923K, Wetherill Park QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery PAHs in Soil Base + Duplicate + %RPD 164998-43 11/04/2017 || 11/04/2017 11/04/2017 Date extracted 164998-5 Date analysed 164998-43 11/04/2017 || 11/04/2017 164998-5 11/04/2017 Naphthalene 164998-43 <0.1||<0.1 164998-5 96% mg/kg Acenaphthylene mg/kg 164998-43 <0.1||<0.1 [NR] [NR] Acenaphthene mg/kg 164998-43 <0.1||<0.1 [NR] [NR] <0.1||<0.1 92% Fluorene mg/kg 164998-43 164998-5 Phenanthrene 164998-43 <0.1||<0.1 164998-5 96% mg/kg Anthracene mg/kg 164998-43 <0.1||<0.1 [NR] [NR] Fluoranthene mg/kg 164998-43 <0.1||<0.1 164998-5 83% 164998-43 <0.1||<0.1 164998-5 84% Pyrene mg/kg Benzo(a)anthracene mg/kg 164998-43 <0.1||<0.1 [NR] [NR] Chrysene mg/kg 164998-43 <0.1||<0.1 164998-5 81% 164998-43 [NR] [NR] Benzo(b,j+k)fluoranthene mg/kg <0.2 | | <0.2 164998-43 164998-5 67% Benzo(a)pyrene <0.05 || <0.05 mg/kg Indeno(1,2,3-c,d)pyrene mg/kg 164998-43 <0.1||<0.1 [NR] [NR] 164998-43 <0.1||<0.1 [NR] [NR] Dibenzo(a,h)anthracene mg/kg Benzo(g,h,i)perylene mg/kg 164998-43 <0.1||<0.1 [NR] [NR] Surrogate p-Terphenyl-d14 % 164998-43 90 || 95 || RPD: 5 164998-5 113% **UNITS** QUALITYCONTROL Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Organochlorine Pesticides Base + Duplicate + %RPD in soil Date extracted [NT] [NT] 164998-5 11/04/2017 Date analysed [NT] [NT] 164998-5 11/04/2017 **HCB** [NT] [NR] [NR] mg/kg [NT] alpha-BHC [NT] [NT] 164998-5 113% mg/kg gamma-BHC mg/kg [NT] [NT] [NR] [NR] beta-BHC [NT] 164998-5 [NT] 105% mg/kg Heptachlor [NT] [NT] 164998-5 113% mg/kg delta-BHC mg/kg [NT] [NT] [NR] [NR] Aldrin [NT] [NT] 164998-5 109% mg/kg Heptachlor Epoxide mg/kg [NT] [NT] 164998-5 111% gamma-Chlordane mg/kg [NT] [NT] [NR] [NR] alpha-chlordane mg/kg [NT] [NT] [NR] [NR] Endosulfan I [NT] [NR] [NR] [NT] mg/kg pp-DDE [NT] 164998-5 105% [NT] mg/kg Dieldrin mg/kg [NT] [NT] 164998-5 121% Endrin [NT] 164998-5 mg/kg [NT] 108% pp-DDD [NT] [NT] 164998-5 105% mg/kg Endosulfan II mg/kg [NT] [NT] [NR] [NR]

Envirolab Reference: 164998 Revision No: R 00

mg/kg

mg/kg

mg/kg

[NT]

[NT]

[NT]

[NT]

[NT]

[NT]

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

[NR]

[NR]

104%

[NR]

[NR]

164998-5

Client Reference: E29923K, Wetherill Park							
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]		
Surrogate TCMX	%	[NT]	[NT]	164998-5	117%		
QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Spike % Recovery		
Date extracted	-	[NT]	[NT]	164998-5	11/04/2017		
Date analysed	-	[NT]	[NT]	164998-5	11/04/2017		
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]		
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]		
Chlorpyriphos	mg/kg	[NT]	[NT]	164998-5	99%		
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]		
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]		
Dichlorvos	mg/kg	[NT]	[NT]	164998-5	83%		
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]		
Ethion	mg/kg	[NT]	[NT]	164998-5	105%		
Fenitrothion	mg/kg	[NT]	[NT]	164998-5	88%		
Malathion	mg/kg	[NT]	[NT]	164998-5	106%		
Parathion	mg/kg	[NT]	[NT]	164998-5	105%		
Ronnel	mg/kg	[NT]	[NT]	164998-5	90%		
Surrogate TCMX	%	[NT]	[NT]	164998-5	89%		
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Date extracted	-	[NT]	[NT]	164998-5	11/04/2017		
Date analysed	-	[NT]	[NT]	164998-5	11/04/2017		
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1254	mg/kg	[NT]	[NT]	164998-5	104%		
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]		
Surrogate TCLMX	%	[NT]	[NT]	164998-5	89%		

		Client Reference	e: E29923K, Wetheril	l Park		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
Acid Extractable metals in			Base + Duplicate + %RPD			
soil						
Date prepared	-	164998-43	11/04/2017    11/04/2017	164998-5	11/04/2017	
Date analysed	-	164998-43	11/04/2017    11/04/2017	164998-5	11/04/2017	
Arsenic	mg/kg	164998-43	<4    4	164998-5	90%	
Cadmium	mg/kg	164998-43	<0.4  <0.4	164998-5	94%	
Chromium	mg/kg	164998-43	11  9  RPD:20	164998-5	96%	
Copper	mg/kg	164998-43	78    42    RPD: 60	164998-5	100%	
Lead	mg/kg	164998-43	12    14    RPD: 15	164998-5	84%	
Mercury	mg/kg	164998-43	<0.1  <0.1	164998-5	98%	
Nickel	mg/kg	164998-43	47    33    RPD: 35	164998-5	93%	
Zinc	mg/kg	164998-43	58    61    RPD: 5	164998-5	95%	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
vTRH(C6-C10)/BTEXNin			Base + Duplicate + %RPD			
Soil						
Date extracted	-	[NT]	[NT]	164998-44	11/04/2017	
Date analysed	-	[NT]	[NT]	164998-44	11/04/2017	
TRHC6 - C9	mg/kg	[NT]	[NT]	164998-44	107%	
TRHC6 - C10	mg/kg	[NT]	[NT]	164998-44	107%	
Benzene	mg/kg	[NT]	[NT]	164998-44	97%	
Toluene	mg/kg	[NT]	[NT]	164998-44	107%	
Ethylbenzene	mg/kg	[NT]	[NT]	164998-44	109%	
m+p-xylene	mg/kg	[NT]	[NT]	164998-44	110%	
o-Xylene	mg/kg	[NT]	[NT]	164998-44	110%	
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	164998-44	114%	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
		D.IT.		404000 44	44/04/0047	
Date extracted	-	[NT]	[NT]	164998-44	11/04/2017	
Date analysed	-	[NT]	[NT]	164998-44	12/04/2017	
TRHC10 - C14	mg/kg	[NT]	[NT]	164998-44	124%	
TRHC15 - C28	mg/kg	[NT]	[NT]	164998-44	115%	
TRHC29 - C36	mg/kg	[NT]	[NT]	164998-44	96%	
TRH>C10-C16	mg/kg	[NT]	[NT]	164998-44	124%	
TRH>C16-C34	mg/kg	[NT]	[NT]	164998-44	115%	
TRH>C34-C40	mg/kg	[NT]	[NT]	164998-44	96%	
Surrogate o-Terphenyl	%	[NT]	[NT]	164998-44	76%	

		Client Reference	e: E29923K, Wetheri	II Park	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate  Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	164998-44	11/04/2017
Date analysed	-	[NT]	[NT]	164998-44	11/04/2017
Naphthalene	mg/kg	[NT]	[NT]	164998-44	90%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	164998-44	93%
Phenanthrene	mg/kg	[NT]	[NT]	164998-44	95%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	164998-44	85%
Pyrene	mg/kg	[NT]	[NT]	164998-44	88%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	164998-44	82%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	164998-44	80%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	164998-44	118%
QUALITY CONTROL Acid Extractable metals in	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
soil					
Date prepared	-	[NT]	[NT]	164998-44	11/04/2017
Date analysed	-	[NT]	[NT]	164998-44	11/04/2017
Arsenic	mg/kg	[NT]	[NT]	164998-44	94%
Cadmium	mg/kg	[NT]	[NT]	164998-44	100%
Chromium	mg/kg	[NT]	[NT]	164998-44	101%
Copper	mg/kg	[NT]	[NT]	164998-44	95%
Lead	mg/kg	[NT]	[NT]	164998-44	96%
Mercury	mg/kg	[NT]	[NT]	164998-44	95%
Nickel	mg/kg	[NT]	[NT]	164998-44	94%
Zinc	mg/kg	[NT]	[NT]	164998-44	98%

Envirolab Reference: 164998 Revision No: R 00

## **Report Comments:**

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 164998-5, 9, 20, 22 & 24 were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 164998-43 for Cu. Therefore a triplicate result has been issued as laboratory sample number 164998-50.

Asbestos ID was analysed by Approved Identifier: Lucy Zhu
Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 164998 Page 36 of 37

Revision No: R 00

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 164998 Page 37 of 37

Revision No: R 00



## A division of Envirolab Group



Envirolab Services Pty Ltd - Melbourne ABN 37 112 535 645 -02 1 Dalmore Drive, Scoresby, VIC 3179 Australia Ph +613 9763 2500 Fax +613 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

## **SAMPLE RECEIPT ADVICE**

Client Details	
Client	Environmental Investigation Services
Attention	Jake Cashman

Sample Login Details	
Your Reference	E29923K - Wetherill Park
Envirolab Reference	10552
Date Sample Received	11/04/2017
Date Instructions Received	11/04/2017
Date Results Expected to be Reported	19/04/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on receipt (°C)	15.2C
Cooling Method	Ice Pack
Sampling Date Provided	YES

## Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

## Please direct any queries to:

Pamela Adams	Analisa Mathrick		
Phone: 03 9763 2500	Phone: 03 9763 2500		
Fax: 03 9763 2633	Fax: 03 9763 2633		
Email: padams@envirolab.com.au	Email: amathrick@envirolab.com.au		

Sample and Testing Details on following page



## A division of Envirolab Group



Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample Id	vTRH(C6- C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	Acid Extractable metals in soil
DUPJDC1	✓	✓	✓	✓



us.moo.ds/orwne@enviro/ab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Melbourne | ABN 37 112 535 645 - 002

10552

CERTIFICATE OF ANALYSIS

Client:

**Environmental Investigation Services** 

PO Box 976 North Ryde BC NSW 1670

Attention: Jake Cashman

Sample log in details:

Your Reference: E29923K - Wetherill Park

No. of samples: 1 Soil

Date samples received / completed instructions received 11/04/2017 / 11/04/2017

**Analysis Details:** 

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

**Report Details:** 

Date results requested by: / Issue Date: 19/04/17 / 19/04/17 / 19/04/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

## **Results Approved By:**

Pamela Adams Laboratory Manager



vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	10552-1
Your Reference		DUPJDC1
Date Sampled		06/04/2017
Type of sample		Soil
Date extracted	-	12/04/2017
Date analysed	-	14/04/2017
vTRHC6 - C9	mg/kg	<25
vTRHC6 - C10	mg/kg	<25
TRHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	93



TRHSoil C10-C40 NEPM		
Our Reference:	UNITS	10552-1
Your Reference		DUPJDC1
Date Sampled		06/04/2017
Type of sample		Soil
Date extracted	-	12/04/2017
Date analysed	-	18/04/2017
TRHC10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	410
Total+veTRH(C10-C36)	mg/kg	410
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	390
TRH>C34-C40	mg/kg	560
Total+veTRH(>C10-C40)	mg/kg	950
Surrogate o-Terphenyl	%	93



PAHs in Soil		
Our Reference:	UNITS	10552-1
Your Reference		DUPJDC1
Date Sampled		06/04/2017
Type of sample		Soil
Date extracted	-	12/04/2017
Date analysed	-	19/04/2017
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	0.2
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	1
Anthracene	mg/kg	0.3
Fluoranthene	mg/kg	2.6
Pyrene	mg/kg	2.8
Benzo(a)anthracene	mg/kg	1.1
Chrysene	mg/kg	1.3
Benzo(b,j&k)fluoranthene	mg/kg	1.9
Benzo(a)pyrene	mg/kg	1.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6
Dibenzo(a,h)anthracene	mg/kg	0.2
Benzo(g,h,i)perylene	mg/kg	0.8
Total +ve PAH's	mg/kg	14
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	1.7
Benzo(a)pyrene TEQ calc (Half)	mg/kg	1.7
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	1.7
Surrogate p-Terphenyl-d14	%	84



Acid Extractable metals in soil		
Our Reference:	UNITS	10552-1
Your Reference		DUPJDC1
Date Sampled		06/04/2017
Type of sample		Soil
Date digested	-	13/04/2017
Date analysed	-	13/04/2017
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	210
Copper	mg/kg	70
Lead	mg/kg	10
Mercury	mg/kg	<0.1
Nickel	mg/kg	19
Zinc	mg/kg	34



Moisture		
Our Reference:	UNITS	10552-1
Your Reference		DUPJDC1
Date Sampled		06/04/2017
Type of sample		Soil
Date prepared	-	13/04/2017
Date analysed	-	18/04/2017
Moisture	%	15



MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.



	Clie	nt Referenc	e: E	29923K - We	therill Park		
UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
					Base II Duplicate II %RPD		
-			12/04/2	[NT]	[NT]	LCS-1	12/04/2017
			017				
-			14/04/2 017	[NT]	[NT]	LCS-1	14/04/2017
mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	97%
mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	97%
mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	99%
mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	95%
mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	95%
mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-1	97%
mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	94%
mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
%		Org-016	99	[NT]	[NT]	LCS-1	97%
UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
				Sm#			Recovery
					Base II Duplicate II % RPD		
-			12/04/2 017	[NT]	[NT]	LCS-1	12/04/2017
-			14/04/2 017	[NT]	[NT]	LCS-1	14/04/2017
mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	84%
mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	88%
mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	107%
mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	84%
mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	88%
mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	107%
%		Org-003	79	[NT]	[NT]	LCS-1	106%
UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
					Base II Duplicate II %RPD		
-			12/04/2 017	[NT]	[NT]	LCS-1	12/04/2017
-			19/04/2 017	[NT]	[NT]	LCS-1	19/04/2017
mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	90%
	0.1	Org-012	<0.1		[NT]	LCS-1	88%
	0.1	Org-012	<0.1		[NT]	[NR]	[NR]
	0.1	_	<0.1			LCS-1	90%
	0.1	_	<0.1			LCS-1	86%
	0.1	_	<0.1				[NR]
	0.1	_	<0.1			LCS-1	92%
	0.1	_	<0.1			LCS-1	94%
	0.1	_	<0.1				[NR]
mg/kg	0.1	Org-012			[NT]	LCS-1	108%
	mg/kg	UNITS PQL	UNITS PQL METHOD  -	UNITS PQL METHOD Blank  -	UNITS POL METHOD Blank Duplicate Sm#  -	UNITS	UNTS

Envirolab Reference: 10552 Revision No: R 00



Client Reference: E29923K - Wetherill Park												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
PAHs in Soil						Base II Duplicate II %RPD						
Benzo (b,j&k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]				
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-1	80%				
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]				
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]				
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]				
Surrogate p-Terphenyl- d ₁₄	%		Org-012	86	[NT]	[NT]	LCS-1	90%				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
Acid Extractable metals in soil						Base II Duplicate II %RPD						
Date digested	-			13/04/2 017	[NT]	[NT]	LCS-1	13/04/2017				
Date analysed	-			13/04/2 017	[NT]	[NT]	LCS-1	13/04/2017				
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-1	102%				
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-1	107%				
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	109%				
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	106%				
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	105%				
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-1	119%				
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	107%				
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	106%				



QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Moisture				
Date prepared	-			[NT]
Date analysed	-			[NT]
Moisture	%	0.1	Inorg-008	[NT]



## **Report Comments:**

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample



#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

**Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)**: This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.



		<u>-</u> .		HAME	LE ANI	D CHAIN OF	CUS	TOD	Y FORI	Ų						
<u>10:</u> ENVIROLAE	.==.	acc ans. 1								FROM				0		2
			_	EIS Job		F29923M				- 1		ENTAL			2.5	
I2 ASHLEY :				Number	:					- 1	FIGAT	NON				
ODWSTAH		[2387								SERV						
P: (02) 99106				Cate Has		STANDARD				FEAR	0=11	5 WICK	S ROA[	)		
F: [02] 991 <b>0</b> 9	204			Require	d:					NAGO	MARIE	E PARK	NSW 2	113		
				i						F: 02-	5866.5	-000	Fox	3886	5001	
Attention At	<b>S</b> ggn			Paga:		1 of	2			Attent	Son		Jake C	ashmi	яњ	
.postion:	Weth	erial Peris					$\Box$		£:	ample Pra			y on les			
Sempler:	_10€ 4	HL		Г	<del></del>		_			Te	519 Re	quiren - j		:		_
Date Sampled	Lab Right	Sample Number	Copth (m)	Samp'e Container	PID	Sample Description	Dembe da	Courba 3	втех					     		
000/2017	1	BH30;	02601	 c,≜	0	K.W	X				+	+	+	├~-		
ıi.	5	7	95-1195	- 9	1	;	_				$\neg$	$\neg$	_	$\vdash$		_
	3	L i	15-97		] [					$\dashv \dashv$		-				
	40	N	2.35		ij	ý		$\times$		-	$\dashv$	$\top$	$\top$	ϯ.	Н	
1	5	64302	बेखु <b>्र•</b> शह	45		f.df	W.						_	1	П	
	6	ij	8.7 - 0.95	н		:_										
!	7	j	17-195	V	Ţij.	¥					二	٦,	audenésé	Santi	-	Γ
i	8	V	61. 4.5	घ ६	i i	Stoller					iac Jal	9	17	Sarvio Astivo (SW 2	At .	Γ
Ш	7	BH303:	J. (198	12	÷	Falg	X				110	1	Mo (102)	9100	209	Γ
	19	1	08-43	1	υįλ	finkle				7		169	1	3		Ī
	iί	3149.04	ون والعد		us	7.0	X			32	ie Rijo		10:4	5		
	/2	· k	6.6-1.8		12_	Sinie			<u> </u>	wie 1		Dy M	16/			
	13.	BH 395	1.15 -C 1	1	8	F. H	×		]_		oling.	ice/[C8]	a			
	14	الخد	4349 7	-		Section				$\perp$	CLOII ⁴ .	Habitan	gra <b>ice</b>			
-	NÇ"	51134	613-07	m/d	L	1/ 2/	X		<u> </u>	_ .	- 1				Ϊ,	
4	16	- 1	20.8 - 1	3	E)	1	<u> </u>			:			<u> </u>	<u> </u>		
	² 2	l	18-5	l i	1	¥					_ į			i :	_ [	
~7 — J	18		3.45 3.		V	- W	_	$\geq$		εή	Anol	ae L	Enwrol a Da	no ser Imeru . Acean	lokes i	
<del></del>	19	ψ	6.6 - 3 5	. B		Stating				غر ا	`-⊰ <del>ઇNo</del>	S	COVANO,	/ IC	777 B	_
1 1	<i>(</i> 0	\$130 <u>78</u>	0.0-0.6	i i		14 7	X	ļ	$\perp \downarrow$		TO:	<u>S</u> 2	11/4/	.	*****	_
	<u>₹/</u>		11-13	1	1	2 / 3 (m2				1 1	հե^նչ Հագագրա		111:30	· 7		
		<u>64301</u>	6.21-01	9.		F. IF	X	<u> </u>		Re	- 7	iiigi yo Riferii	এ	Li5,	٦٠,	<u>.</u>
	<u> 일</u> 기	- #	1-12			1	<u></u>			Co	oling	celler	a D			_
37 -	2¢]	_ <u>_</u> [	7-7-2	1.	96	V _	X.		$\vdash$	5#	<u></u>	meen	rakena/i	ona		_
	८५	W	3 Kellin mile regulæd	1	<i>P</i>	Silly (lay	0,_	L-0								
Samo		143071	001		ş. V		G - 25 A - 7i P - Pl	ortic i etarii etarii	ntainers Glass Ja Aabesto Bag	os Bså			_			
unculshed to Talke	Car	horas		Coste: Co∫L	1201	7	Time:	49	<del>-</del>	NSA MI	red By	- E	-5	3#br:	<b>≠</b>	

Relin JACK EMBLEN ELS 10/4/17 14:30 Jaky SAMPLE AND CHAIN OF CUSTODY FORM

	\$2 AS CHAT P: \$65 F: (85	ROLAS (HLEY ) (SACO () 99106 () 98106 () 48106	STREET O NBW \$200 6701			EM Job Number: Data Res Required	o-tu	E29925K 6TANDARD 2 . F	T.			.5 R	MEA ERVI EAR IACQ	ONNI NGA' CE8 CF 1: LIARI MAS :	IS WH	CKS R UÇ NS	WY 2:11 F: dta-a		is
1	Local	Hon:	WAR.	nd Park	akiny.	113			Sample Preserved in Estry on use										
- 1	600		JDG+	HE.	127207								Ter	la Pa	ng dire	4			
	_	l <del>phy</del> uplod	Lab Ref:	Sample Number	Depth (re)	Sample Contains	PIE	Bampa Description	Collision for	Compo 3	Ę		İ						
ı	8040	7017	26	8430e	\$10° 0-35	<b>0</b> , A	0.0	24/	X			-+	$\dashv$				$\dashv$	_+	士
			27	w	04 06	ΧĢ	٠	5 lylly									1.5	I	
000			28	May	0 /2-0-3	40		64	<u>.</u>	X		$\perp$					[	$\perp$	$\perp$
\$			29	J/	1.3-0 %	ļ ;	1	State	1		Ш	_ _	_		_ !	$\perp$	_	$\perp$	$\perp$
1		ì	30	BW312	0.4 € 3	-	4	Filt		X	<u> </u>	4	_		:	_	_		$\perp$
1			31	1	1.4 -1.3	1	1		1	<u> </u>		4				_		$\perp$	$\perp$
		ļ	32	V	2.22	ŀį	$\Box$	V	$oxed{}$		Щ	_	4			_	_	_	$\perp$
}			33	8H) 13	0765		$\vdash$	1.14		X	Ш	_	_	_			_	$\dashv$	<u> </u>
ı		<u>!</u>	34		05-07		j		_		Ш	<u>,                                    </u>	4	_	$\square$		_	$\dashv$	$\perp$
1		<u> </u>	3\$		25-27	<b>↓</b>		- W		-	Щ	$\dashv$	4	_		_	_		4
1		l	36	V	36:35	$\sqcup$		تاميلو			Ш	_	4	_	Щ	_	_	_	_
ļ	_	1	37	64314	02-07	1		80		X		_	4	_		_	_	$\dashv$	1
ļ		1	38	- (	0.6 - 7	1	$\sqcup \!\!\! \perp$	$\perp$		X		_	4	_			_	$\dashv$	┵-
1		<u> </u>	39		2-11		<u> </u>	<u> </u>		-	Ш	$\dashv$	_	_		_	_	$\dashv$	4
1		ļ	90	₩	26-19	$\vdash$	ļ ţ	Singley.				$\rightarrow$	4	_		_{			$\perp$
ŀ		1	41	BH315	9.5-1.35			F. II		×		$\rightarrow$	4	_		_	- 1	_	-
ŀ	_	_	42	·	16-18		$\vdash$	Shale	_	_	H	$\dashv$	$\dashv$			77	_	+	-
ŀ		+		843n	6.245	<del>                                     </del>	<del>  </del>	61		X		$\dashv$	$\dashv$	$\dashv$	_		-	-+	-
ŀ		<u> </u>	44	BHST	D.15 -AS		₩	<u> </u>			$\vdash \vdash$	+	$\dashv$	_		$\vdash$		+	-
_	_	}—	45	<i>V</i>	25. 345	V		State	$\vdash$		<u> </u>		-			Н		+	+
1	-12	ļ	76	Dyrupq NIJA Z	<u> </u>	<u>G</u>	<u>-</u> -	···}	<del> </del> -	$\bigcirc$		+	$\dashv$	_		-	$\dashv$	+	+
ł		┤	r. =	DWHCI		+ <b>j</b> -−	<u> </u>	-	$\vdash$	$\sim$	$\vdash$	$\dashv$	$\dashv$		$\vdash$	H	1	+	+
ł			#0	PIPHL2		+1	-	-	$\vdash$	×	$\vdash$	┥	$\dashv$		H	H	$\dashv$	+	╬
ł	_		110	78		1		Sand	├	<u> </u>	V	-	$\dashv$		<b> </b>	$\vdash$	$\dashv$	$\rightarrow$	+
	termentes (communicatéets cilon dintis require					: Хатре Containers G - 250mg Glass Ja A - Zipiock Ashessa V - Phagis Bag			Jar Paga Bi	Ner Beg									
Regil require found bigs. Delta:						0.	45	-	ĺ	Nh	via t	ነት ፈ	:4)	·	10/	F			



**Appendix D: Report Explanatory Notes** 



## **STANDARD SAMPLING PROCEDURE (SSP)**

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS.

The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

#### **Soil Sampling**

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The
  work area should be at a distance from the drill rig/excavator such that the machine can operate in a
  safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993¹⁷.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

#### **Decontamination Procedures for Soil Sampling Equipment**

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
  - Phosphate free detergent (Decon 90);
  - Potable water;
  - Stiff brushes; and
  - Plastic sheets.

¹⁷ Standards Australia, (1993), Geotechnical Site Investigations. (AS1726-1993)



- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

#### **Groundwater Sampling**

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells
  (well development) to remove any water introduced during the drilling process and/or the water that is
  disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micropurge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will
  not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment
  generally required includes:
  - Micropore filtration system or Stericup single-use filters (for heavy metals samples);
  - Filter paper for Micropore filtration system; Bucket with volume increments;
  - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
  - Bucket with volume increments;
  - Flow cell;
  - pH/EC/Eh/T meters;
  - Plastic drums used for transportation of purged water;
  - Esky and ice;
  - Nitrile gloves;
  - Distilled water (for cleaning);
  - Electronic dip meter;



- Low flow pump pack and associated tubing; and
- Groundwater sampling forms.
- If single-use stericup filtration is not used, clean the Micropore filtration system thoroughly with distilled water prior to use and between each sample. Filter paper should be changed between samples. 0.45um filter paper should be placed below the glass fibre filter paper in the filtration system.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micro-purge sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential
  and groundwater levels are monitored (where possible) using calibrated field instruments to assess the
  development of steady state conditions. Steady state conditions are generally considered to have been
  achieved when the difference in the pH measurements was less than 0.2 units and the difference in
  conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements detailed in the NEPM 2013
  and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage
  in an insulated sample container with ice as outlined in the report text.
- Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

#### **Decontamination Procedures for Groundwater Sampling Equipment**

- All equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
  - Phosphate free detergent;
  - Potable water;
  - Distilled water; and
  - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head
  using brushes in the bucket containing detergent until all materials attached to the equipment are
  removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned



## **QA/QC DEFINITIONS**

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994¹⁸) methods and those described in *Environmental Sampling and Analysis, A Practical Guide*, (H. Keith 1991¹⁹).

#### Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection limit (MDL) for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations.

"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" Keith 1991.

#### **Precision**

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD). Acceptable targets for precision in this report will be less than 50% RPD for concentrations greater than ten times the PQL, less than 75% RPD for concentrations between five and ten times the PQL and less than 100% RPD for concentrations that are less than five times the PQL.

#### **Accuracy**

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured. The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes.

The proximity of an averaged result to the true value, where all random errors have been statistically removed. Accuracy is measured by percent recovery. Acceptable limits for accuracy generally lie between 70% to 130% recoveries. Certain laboratory methods may allow for values that lie outside these limits.

#### Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

¹⁸ US EPA, (1994), SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

¹⁹ Keith., H, (1991), Environmental Sampling and Analysis, A Practical Guide.



#### **Completeness**

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms; Sample receipt form;
- All sample results reported; All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

#### Comparability

Comparability is the evaluation of the similarity of conditions (eg. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

#### **Blanks**

The purpose of laboratory and field blanks is to check for artifacts and interferences that may arise during sampling and analysis.

#### **Matrix Spikes**

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

#### **Surrogate Spikes**

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

## **Duplicates**

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$ 



**Appendix E: Field Work Documents** 

# Groundwater Sampling Report



Client:	CIR. Cons	struction Pty	Lld			Job No.:	E29923K			
Project:	Proposed N	New Wareho	ouse			Well No.:	1403	41		
Location:	58-32 Redf	ern Street, V	ehouse Wall No.: MU34/ et, Wetherill Park, NSW Depth (m): 14/4							
WELL FINE	SH					-				
Gattic C	over		St	andpipe			PVC Pipe			
WELL PUR	GE DETAIL	S:								
Method:		Low Flow	Sample		SWL - Bef	fore:	4.57			
Date:		12/4/2017			Time - Bet	fora:	8.00			
Undertaker	n By:	JDC			Total Vol F	Removed:	56			
Pump Prog		_	Y51 (4)		PID (ppm):	):	Þ			
PURGING	SAMPLING	MEASURE								
Time (min)	СМР	Vol (L)	SWL (m)	Temp (°C)	DO (mg/L)	EC (µS/cm)	рΗ	Eh (mV)		
€. 16	2.37	5.5	4.70	22- 6	4 7	3303	6.26	951		
8:17	7.37	0.6	473	27.5	0.5	3208	6.25	840		
B. 19	7.37	0.7	47.7 9	2Z 7	OY	3923 3356	6.28	73.0		
8 22	2.37	0.9	4.50	27.1	0.6	3356	6.29	61.4		
8:24	1 60	1.0	4.83	22.7	d y	3749	6.30	JT. z		
8:25	1.60	67	₩.EV	12 7	0.4	77 78	8.30	54.6		
Starled	SAMPIC .	0	8 25 40		- 42					
	<u> </u>									
Containers	Used/Com	a management and a second		pre 1	metels	V BTEX	WIL V			
		JP 200	y'							
VELY	5. Hz	, 1-	odon's.	no fra	o ples-	. 10	she er	- Search for		
Tested Bý:	υDC,		Remarks:			7				
Date Tester	d: p_[4/	2017	- All measu	rements are :	corrected to gr	ound level				
Checked By					for standing w					
Date			→ Sleady etc.	ale considirance	udilfananca in	the philess to	an 0.2 units.	and		

# Groundwater Sampling Report



Client:		struction Pty			Malan	Job No.:	E29923K	
Project:		New Wareho		Well No.:	302			
Location:		fern Street, V	Velherill Park	Depth (m):	1.9	S		
WELL FINI								
Gatic C	lover		St	andpipe			PVC Pipe	
WELL PUR	GE DETAIL	.5:						
Mothod:		Low Flow 9	Sample		SWL - Be	for <del>s</del> :	392	
Date:		12/4/2017			Time – Be	fore:	9:55	
Undertake	н Ву:	JDC			Total Vol	Removed:	41	
Pump Prog					PIO (ppm)	15		
PURGING	SAMPLING	MEASURE	MENTS	1/8	ET.			
Time (min)	CMP	Vol (L)	SWL (m)	Temp (°C)	DO (mg/L)	EC (µ8/cm)	pH *	Eh (mV)
10 0.0	2.5.2	0.5	Y-18	23.7	0 - 8	22816	5.68	944
10:03	5.23	08	4.24	23.2	0.6	221/7	6.63	86.7
V 06	486	08	43.	27.1	65	23464	6.60	857
10.09	4.86	1.5	4.37	13 4	05	23578	658	86.5
10 11	4.16	1.7	Y 37	23 5	0.6	23617	65)	852
/g , / l	4.86	/- P	4.37	225	0.6	23637	6.59	847
(0.7)		18	4.37	235	06	23646	6.51	843
Sta Feet	560,01	50	10:13					
	J		1					
		<u> </u>						
		-			ļ			
							<u> </u>	
		ļ	<b></b>					
		<u>\</u>				-		
4			ļ					
						-		
			ļ					
W-200						-		-
			<b>_</b>					
Cantalasa	Used/Com	L	I				1	
			2 / 2	1 1 / / /	110 40	/.e/ f / /	1-66	
Me. ter		001 400		7				
g (A. _y	( Same	् त्र.[	N-33					
Tested By:	201	,	Remarks:					
Date Teste		12017			corrected to gr			
Checked B	Y. CAP				for standing v	vater leval 1 the pH less th	on C.S. voile: 4	d
Date:	10/5/1	7-			y less than 10		ian Q z urins i	3 3/1

# Groundwater Sampling Report



		struction Pty				Job No.:	E299238	(			
		New Wareho				Well No.:	AN 71				
		fern Street, V	VethenII P	ark, NSW		Depth (m):	1990				
WELL FINISH	1										
★ Galic Co	ver			Standpipe			PVC Pipe				
WELL PURG	E DETAIL	.S:									
Method:		Low Flow 5	Sample		SWL - Be	lore:	3.2	7			
Date:		12/4/2017			Time - Be	fore:	70				
Undertaken l	Ву:	JDC			Total Vol	Removed:	46	-			
Pump Progra	m No:	_·			PID (ppm)	):	0				
PURGING / S	AMPLING	MEASURE	MENTS								
Time (min)	CMP	Vol (L) SW		Temp	DO (mg/L)	EC (p\$/cm)	ρН	Eh (mV)			
Ø 11-	U.33	2.3	2.36	22.8	2.1	24475	6.51	163.4			
9 14	4:53	0.8	3-13	23.0	1.9	24612	6.53	1500			
9:10	3.17	1.0	3.50	20.0	1.8	1-v4 70	6.55	157.0			
	3.17	12	7.59	23.1	1.8	2472.9	6.56	149.2			
	2.17	1.5	360	21.1	1.4	24733	6.56	148.2			
The second secon	7.77	16	3.62	23.1	18	24701	6.57	1427			
	2.17	17	3.65	23 /	1.8	24708	6.56	1476			
Star Least	fan			9.22				17/5			
								-			
					ļ						
					ļ						
			<b></b>		-	<del> </del>					
Containers U	sed/Com	ments	2 9/41	1 500 , 1 6	VV, 12	essels 4	V BIE	7/			
	at to										
No	odoni		shee		L	phise a	1. 1. 160	1 2.60			
Tested By:	P(	/ /-4	Remark			france of	representation				
					orrected to or	ound level					
Checked By				- All measurements are corrected to ground level - SVVL is an abbreviation for standing water level.							
Date:	1.1.1		- Steady state conditions - difference in the pH less than 0.2 units and								
	10/5/19	2	difference in conductivity less than 10%								



## Groundwater Monitoring Well Development Report

Client: (10 (	- Churthan	Phy Ite	1	Job No.:	£29923A
Project: Program	d New W	Lie house		Well No.:	301
Location: 18-6	2 Rodfern	54 , 1/0 Hh	will Pach	Depth (m	1/: 4/2
Client: CIR C Project: Proposed Location: \$8 - 6 WELL FINISH DETAILS	73.867.1	, ,			37-
X Gatic Cover		Standpipe		PVC PI	pė
WELL DEVELOPMENT					
Method:	Proge	SWL -	- Before: (m)	)	2.2 _Z
Date:	7/8/2017		- Before:		7.30
Undertaken By:	100	SWL-	- After: (m)		5.69
Total Vol. Removed:	15	Time	- After:		7 40
PID Reading (ppm):					7.9
Comments:				l	
DEVELOPMENT MEAS	UREMENTS				
Volume Removed (L)	Temp (°C)	DQ (mg/L)	EC (µS/m)	рН	Eh (mV)
0.2	23.3	04	1890	6.58	10.8
Şi .	29.6	0.3	1824		
1-5	25.	2.0	1913	7.46	5 -54.0
. 15	24 (	Ø 47	18.0	7.07	
Comments: 1974	Silly, Oa	- L			
With the Book	21.117	A 1 10	Sheen .	OF PARE	price defected
Tested By: 3.07	Remarks	:			
Date Tested: 7/4/9			rected to ground	d level	
Checked By:	- All staled	Volumes are in	l itres		
Date			r standing water difference in the		i 0.2 units and
10/5/1	2 / difference	in conductivity I			
				100	



## Groundwater Monitoring Well Development Report

Client: (1/1)	archer free	14 /4	/	Job No.:	1229923K
Client: CII C Project: "Made New Location: ST -	wasthouse	17	<u></u>	Well No.:	302
Location: CX	62 Red Con	1 54. Wa	Marill Path	Depth (m):	bon
WELL FINISH DETAILS	5	1 1 1 1 1			
Gatic Cover		Standpipe		PVC Pipe	
WELL DEVELOPMENT					
Method:	Purge.	SWL-	- Before: (m	) 5	101
Date:	7/8/201	7 Time	- Before:		01
Undertaken By:	7/4/201	SWL -	- After: (m)		F. C 5
Total Vol. Removed:	4 4	Time ·	- After:		7: 72
PID Reading (ppm):	-				
Comments:	-	- Ki			
DEVELOPMENT MEAS	UREMENTS				
Volume Removed	Temp (°C)	DO	EC	р <b>Н</b>	Eh (mV)
(L)		(mg/L)	(µ5/m)	·	, -
2	2:0	2.7	11933	6 48	72 9
Ч	2.8	1 :-	120 245	6.45	80 9
6	23.0	1 5 2 <b>4</b>	20062	5 40	84.8
		#			
			/		
Comments: Yes-y	silly, some	95 (30	1)		
	,		1.		
Tested By: とりと	Remarks	<u>:</u>			
Date Tested:		rements are cor		a level	
Checked By:	- will state:	Volumes are in Lebbreviation fo		clevel	
Date:	- Steady sta	ate conditions - a	difference in the	pH less than 0.2	units and
10/5/1	# difference	in conductivity I			
	- Mulumulii .	3 manilohny we	ii voiumes are p	nidea	



# Groundwater Monitoring Well Development Report

Client: CIR	Constructio	n Pln /	11	Job No.:	F299734
Project: Project:	wood New	were her	1.2-	Well No.:	303
Location:	Construction	14 WOH	eill Peth	Depth (m):	6 100
WELL FINISH DETAILS	3				
X Gatic Cover		Standplpe		PVC Pipe *	p ⁴ .
WELL DEVELOPMENT	DETAILS				
Method:	Purge	SWL	- Before: (m)		7. Z V
Date:	1/8/2017		- Before:		
Undertaken By:	1 500	SWL	- After: (m)		7 × 2
Total Vol. Removed:	76	Time	- After:	8	38
PID Reading (ppm);	(Bac)				
Comments:					
DEVELOPMENT MEAS	UREMENT\$				
Volume Removed (L)	Temp (°C)	DO (mg/L)	EC (µS/m)	рН	Eh (mV)
170	25.9		78736	6.21	. 12511
5	25.9	6.1	23310	6-65	125.4
7	24 6	5.0	24 979	6.57	1/8 /
					Cs 2
					1
					5
Comments: 5/19 htt 7	مه والمادة	me As	(301)		HV
Tested By. Jak	Remarks	<u> </u>			
			rected to ground	level	7.
Checked By: CAP		Volumes are in labbreviation to	Litres rislanding water	leval	
Date:	<ul> <li>Steady statement</li> <li>difference</li> </ul>	de conditions - : •n conductivity (	difference in the	pHilass then 0.2 .	wids and